Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Applied Data Science with Python and Jupyter
Applied Data Science with Python and Jupyter

Applied Data Science with Python and Jupyter: Use powerful industry-standard tools to unlock new, actionable insights from your data

Arrow left icon
Profile Icon Galea
Arrow right icon
NZ$26.99 NZ$38.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3 (3 Ratings)
eBook Oct 2018 192 pages 1st Edition
eBook
NZ$26.99 NZ$38.99
Paperback
NZ$48.99
Subscription
Free Trial
Arrow left icon
Profile Icon Galea
Arrow right icon
NZ$26.99 NZ$38.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3 (3 Ratings)
eBook Oct 2018 192 pages 1st Edition
eBook
NZ$26.99 NZ$38.99
Paperback
NZ$48.99
Subscription
Free Trial
eBook
NZ$26.99 NZ$38.99
Paperback
NZ$48.99
Subscription
Free Trial

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Table of content icon View table of contents Preview book icon Preview Book

Applied Data Science with Python and Jupyter

Introduction


Consider a small food-delivery business that is looking to optimize their product. An analyst might look at the appropriate data and determine what type of food people are enjoying most. Perhaps they find a large amount of people are ordering the spiciest food options, indicating the business might be losing out on customers who desire something even more spicy. This is quite basic, or as some might say, "vanilla" analytics.

In a separate task, the analyst could employ predictive analytics by modeling the order volumes over time. With enough data, they could predict the future order volumes and therefore guide the restaurant as to how many staff are required each day. This model could take factors such as the weather into account to make the best predictions. For instance, a heavy rainstorm could be an indicator to staff more delivery personnel to make up for slow travel times. With historical weather data, that type of signal could be encoded into the model. This prediction...

Preparing to Train a Predictive Model


Here, we will cover the preparation required to train a predictive model. Although not as technically glamorous as training the models themselves, this step should not be taken lightly. It's very important to ensure you have a good plan before proceeding with the details of building and training a reliable model. Furthermore, once you've decided on the right plan, there are technical steps in preparing the data for modeling that should not be overlooked.

Note

We must be careful not to go so deep into the weeds of technical tasks that we lose sight of the goal. Technical tasks include things that require programming skills, for example, constructing visualizations, querying databases, and validating predictive models. It's easy to spend hours trying to implement a specific feature or get the plots looking just right. Doing this sort of thing is certainly beneficial to our programming skills, but we should not forget to ask ourselves if it's really worth...

Training Classification Models


As you've already seen in the previous chapter, using libraries such as scikit-learn and platforms such as Jupyter, predictive models can be trained in just a few lines of code. This is possible by abstracting away the difficult computations involved with optimizing model parameters. In other words, we deal with a black box where the internal operations are hidden instead. With this simplicity also comes the danger of misusing algorithms, for example, by overfitting during training or failing to properly test on unseen data. We'll show how to avoid these pitfalls while training classification models and produce trustworthy results with the use of k-fold cross validation and validation curves.

Introduction to Classification Algorithms

Recall the two types of supervised machine learning: regression and classification. In regression, we predict a continuous target variable. For example, recall the linear and polynomial models from the first chapter. In this chapter...

Summary


In this chapter, we have seen how predictive models can be trained in Jupyter Notebooks.

To begin with, we talked about how to plan a machine learning strategy. We thought about how to design a plan that can lead to actionable business insights and stressed the importance of using the data to help set realistic business goals. We also explained machine learning terminology such as supervised learning, unsupervised learning, classification, and regression.

Next, we discussed methods for preprocessing data using scikit-learn and pandas. This included lengthy discussions and examples of a surprisingly time-consuming part of machine learning: dealing with missing data.

In the latter half of the chapter, we trained predictive classification models for our binary problem, comparing how decision boundaries are drawn for various models such as the SVM, k-Nearest Neighbors, and Random Forest. We then showed how validation curves can be used to make good parameter choices and how dimensionality...

Summary

In this chapter, we have seen how predictive models can be trained in Jupyter Notebooks.

To begin with, we talked about how to plan a machine learning strategy. We thought about how to design a plan that can lead to actionable business insights and stressed the importance of using the data to help set realistic business goals. We also explained machine learning terminology such as supervised learning, unsupervised learning, classification, and regression.

Next, we discussed methods for preprocessing data using scikit-learn and pandas. This included lengthy discussions and examples of a surprisingly time-consuming part of machine learning: dealing with missing data.

In the latter half of the chapter, we trained predictive classification models for our binary problem, comparing how decision boundaries are drawn for various models such as the SVM, k-Nearest Neighbors, and Random Forest. We then showed how validation curves can be used to make good parameter choices...

Left arrow icon Right arrow icon

Key benefits

  • Get up and running with the Jupyter ecosystem and some example datasets
  • Learn about key machine learning concepts such as SVM, KNN classifiers, and Random Forests
  • Discover how you can use web scraping to gather and parse your own bespoke datasets

Description

Getting started with data science doesn't have to be an uphill battle. Applied Data Science with Python and Jupyter is a step-by-step guide ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction to these concepts. In this book, you'll learn every aspect of the standard data workflow process, including collecting, cleaning, investigating, visualizing, and modeling data. You'll start with the basics of Jupyter, which will be the backbone of the book. After familiarizing ourselves with its standard features, you'll look at an example of it in practice with our first analysis. In the next lesson, you dive right into predictive analytics, where multiple classification algorithms are implemented. Finally, the book ends by looking at data collection techniques. You'll see how web data can be acquired with scraping techniques and via APIs, and then briefly explore interactive visualizations.

Who is this book for?

Applied Data Science with Python and Jupyter is ideal for professionals with a variety of job descriptions across a large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries such as Pandas, Matplotlib, and Pandas providing you a useful head start.

What you will learn

  • Get up and running with the Jupyter ecosystem
  • Identify potential areas of investigation and perform exploratory data analysis
  • Plan a machine learning classification strategy and train classification models
  • Use validation curves and dimensionality reduction to tune and enhance your models
  • Scrape tabular data from web pages and transform it into Pandas DataFrames
  • Create interactive, web-friendly visualizations to clearly communicate your findings

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Oct 31, 2018
Length: 192 pages
Edition : 1st
Language : English
ISBN-13 : 9781789951929
Category :
Languages :
Concepts :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want

Product Details

Publication date : Oct 31, 2018
Length: 192 pages
Edition : 1st
Language : English
ISBN-13 : 9781789951929
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total NZ$ 162.97
Data Science Algorithms in a Week
NZ$64.99
Artificial Intelligence and Machine Learning Fundamentals
NZ$48.99
Applied Data Science with Python and Jupyter
NZ$48.99
Total NZ$ 162.97 Stars icon

Table of Contents

3 Chapters
Jupyter Fundamentals Chevron down icon Chevron up icon
Data Cleaning and Advanced Machine Learning Chevron down icon Chevron up icon
Web Scraping and Interactive Visualizations Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3
(3 Ratings)
5 star 66.7%
4 star 0%
3 star 33.3%
2 star 0%
1 star 0%
Lukas K. Aug 09, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Although this book only covers some of the techniques and approaches usually encountered when reading about data sciences, it covers them really well. And it has a clear structure. I especially liked the broad coverage on Jupyter at the beginning of the book. I can recommend this book to everyone that wants to get into the field of data science. You definitely, need some further material, but it certainly adds knowledge and value.
Amazon Verified review Amazon
wPastor Mar 01, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The iBook version contain blurred images for that reason I bought the paper version.The book is perfect for me as a new guy in data science. The author teachs how to install anaconda and how to uptodate it's libraries. Shows how to work with jupyter notebooks and analize libraries such as pandas, matplotlib, numpy, etc.Excellent book to learn how to clean up data and show the results you are looking for.
Amazon Verified review Amazon
kia Feb 08, 2019
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
I just purchased the book online. Some of the code examples are so blurred that are unreadable
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.