Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Cookbook

You're reading from   TensorFlow Machine Learning Cookbook Over 60 practical recipes to help you master Google's TensorFlow machine learning library

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786462169
Length 370 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nick McClure Nick McClure
Author Profile Icon Nick McClure
Nick McClure
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with TensorFlow 2. The TensorFlow Way FREE CHAPTER 3. Linear Regression 4. Support Vector Machines 5. Nearest Neighbor Methods 6. Neural Networks 7. Natural Language Processing 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Taking TensorFlow to Production 11. More with TensorFlow Index

Working with Multiple Layers

Now that we have covered multiple operations, we will cover how to connect various layers that have data propagating through them.

Getting ready

In this recipe, we will introduce how to best connect various layers, including custom layers. The data we will generate and use will be representative of small random images. It is best to understand these types of operation on a simple example and how we can use some built-in layers to perform calculations. We will perform a small moving window average across a 2D image and then flow the resulting output through a custom operation layer.

In this section, we will see that the computational graph can get large and hard to look at. To address this, we will also introduce ways to name operations and create scopes for layers. To start, load numpy and tensorflow and create a graph, using the following:

import tensorflow as tf
import numpy as np
sess = tf.Session()

How to do it…

  1. First we create our sample 2D image with...
You have been reading a chapter from
TensorFlow Machine Learning Cookbook
Published in: Feb 2017
Publisher: Packt
ISBN-13: 9781786462169
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image