Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scalable Data Architecture with Java

You're reading from   Scalable Data Architecture with Java Build efficient enterprise-grade data architecting solutions using Java

Arrow left icon
Product type Paperback
Published in Sep 2022
Publisher Packt
ISBN-13 9781801073080
Length 382 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sinchan Banerjee Sinchan Banerjee
Author Profile Icon Sinchan Banerjee
Sinchan Banerjee
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1 – Foundation of Data Systems
2. Chapter 1: Basics of Modern Data Architecture FREE CHAPTER 3. Chapter 2: Data Storage and Databases 4. Chapter 3: Identifying the Right Data Platform 5. Section 2 – Building Data Processing Pipelines
6. Chapter 4: ETL Data Load – A Batch-Based Solution to Ingesting Data in a Data Warehouse 7. Chapter 5: Architecting a Batch Processing Pipeline 8. Chapter 6: Architecting a Real-Time Processing Pipeline 9. Chapter 7: Core Architectural Design Patterns 10. Chapter 8: Enabling Data Security and Governance 11. Section 3 – Enabling Data as a Service
12. Chapter 9: Exposing MongoDB Data as a Service 13. Chapter 10: Federated and Scalable DaaS with GraphQL 14. Section 4 – Choosing Suitable Data Architecture
15. Chapter 11: Measuring Performance and Benchmarking Your Applications 16. Chapter 12: Evaluating, Recommending, and Presenting Your Solutions 17. Index 18. Other Books You May Enjoy

Techniques to mitigate those challenges

In this section, we will discuss how a data architect can mitigate the aforementioned challenges. To understand the mitigation plan, it is important to understand what the life cycle of a data architecture looks like and how a data architect contributes to it. The following diagram shows the life cycle of a data architecture:

Figure 1.8 – Life cycle of a data architecture

Figure 1.8 – Life cycle of a data architecture

The data architecture starts with defining the problem that the business is facing. Here, this is mainly identified or reported by business teams or customers. Then, the data architects work closely with the business to define the business requirements. However, in a data engineering landscape, that is not enough. In a lot of cases, there are hidden requirements or anomalies. To mitigate such problems, business analysts team up with data architects to analyze data and the current state of the system, including any existing solution, the current cost, or loss of revenue due to the problem and infrastructure where data resides. This helps refine the business requirements. Once the business requirements are more or less frozen, the data architects map the business requirements to the technical requirements.

Then, the data architect defines the standards and principles of the architecture and determines the priorities of the architecture based on the business need and budget. After that, the data architect creates the most suitable architectures, along with their proposed technology stack. In this phase, the data architects closely work with the data engineers to implement proof of concept (POCs) and evaluate the proposed solution in terms of feasibility, scalability, and performance.

Finally, the architects recommend solutions based on the evaluation results and architectural priorities defined earlier. The data architects present the proposed solutions to the business. Based on priorities such as cost, timeline, operational cost, and resource availability, feedback is received from the business and clients. It takes a few iterations to solidify and get an agreement on the architecture.

Once an agreement has been reached, the solution is implemented. Based on the implementation challenges and particular use cases, the architecture may or may not be revised or tweaked a little. Once an architecture is implemented and goes to production, it enters the maintenance and operations phase. During maintenance and operations, sometimes, feedback is provided, which might result in a few architectural improvements and changes, but they are often seldom if the solution is well-architected in the first place.

In the preceding diagram, the blue boxes indicate major involvement from a customer, a green box indicates major involvement from a data architect, a yellow box means a data architect equally shares involvement with another stakeholder, and a gray box means the data architect has the least involvement in that scenario.

Now that we have understood the life cycle of the data architecture and a data architect’s role in various phases, we will focus on how to mitigate those challenges that are faced by a data architect. This book covers how to mitigate those challenges in the following way:

  • Understanding the business data, its characteristics, and storage options:
    • Data and its characteristics were covered earlier in this chapter; it will also be covered partly in Chapter 2, Data Storage and Databases
    • Storage options will also be discussed in Chapter 2, Data Storage and Databases
  • Analyzing and defining the business problem:
    • Understanding the various kinds of data engineering problems (covered in this chapter)
    • We have provided a step-by-step analysis of how an architect should analyze a business problem, classify, and define it in Chapter 4, ETL Data Load – A Batch-Based Solution to Ingest Data in a Data Warehouse, Chapter 5, Architecting a Batch Processing Pipeline, and Chapter 6, Architecting a Real-Time Processing Pipeline
  • The challenge of choosing the right architecture. To choose the right architectural pattern, we should be aware of the following:
    • The types of data engineering problems and the dimensions of data (we discussed this in this chapter)
    • The different types of data and various data storage available (Chapter 2, Data Storage and Databases)
    • How to model and design different kinds of data while storing it in a database (Chapter 2, Data Storage and Databases)
    • Understanding various architectural patterns for data processing problems (Chapter 7, Core Architectural Design Patterns)
    • Understanding the architectural patterns of publishing the data (Section 3, Enabling Data as a Service)
  • The challenge of choosing the best-fit technology stack and data platform. To choose the correct set of tools, we need to know how to use a tool and when to use what tools we have:
    • How to choose the correct database will be discussed in Chapter 2, Data Storage and Databases
    • How to choose the correct platform will be discussed in Chapter 3, Identifying the Right Data Platform
    • A step-by-step hands-on guide to using different tools in batch processing will be covered in Chapter 4, ETL Data Load – A Batch-Based Solution to Ingest Data in a Data Warehouse, and Chapter 5, Architecting a Batch Processing Pipeline
    • A step-by-step guide to architecting real-time stream processing and choosing the correct tools will be covered in Chapter 6, Architecting a Real-Time Processing Pipeline
    • The different tools and technologies used in data publishing will be discussed in Chapter 9, Exposing MongoDB Data as a Service, and Chapter 10, Federated and Scalable DaaS with GraphQL
  • The challenge of creating a design for scalability and performance will be covered in Chapter 11, Measuring Performance and Benchmarking Your Applications. Here, we will discuss the following:
    • Performance engineering basics
    • The publishing performance benchmark
    • Performance optimization and tuning
  • The challenge of a lack of data governance. Various data governance and security principles and tools will be discussed in Chapter 8, Enabling Data Security and Governance.
  • The challenge of evaluating architectural solutions and recommending them to leadership. In the final chapter of this book (Chapter 12, Evaluating, Recommending, and Presenting Your Solution), we will use the various concepts that we have learned throughout this book to create actionable data metrics and determine the most optimized solution. Finally, we will discuss techniques that an architect can apply to effectively communicate with business stakeholders, executive leadership, and investors.

In this section, we discussed how this book can help an architect overcome the various challenges they will face and make them more effective in their role. Now, let’s summarize this chapter.

You have been reading a chapter from
Scalable Data Architecture with Java
Published in: Sep 2022
Publisher: Packt
ISBN-13: 9781801073080
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image