Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Raspberry Pi Computer Vision Programming

You're reading from   Raspberry Pi Computer Vision Programming Design and implement computer vision applications with Raspberry Pi, OpenCV, and Python 3

Arrow left icon
Product type Paperback
Published in Jun 2020
Publisher Packt
ISBN-13 9781800207219
Length 306 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ashwin Pajankar Ashwin Pajankar
Author Profile Icon Ashwin Pajankar
Ashwin Pajankar
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Chapter 1: Introduction to Computer Vision and the Raspberry Pi 2. Chapter 2: Preparing the Raspberry Pi for Computer Vision FREE CHAPTER 3. Chapter 3: Introduction to Python Programming 4. Chapter 4: Getting Started with Computer Vision 5. Chapter 5: Basics of Image Processing 6. Chapter 6: Colorspaces, Transformations, and Thresholding 7. Chapter 7: Let's Make Some Noise 8. Chapter 8: High-Pass Filters and Feature Detection 9. Chapter 9: Image Restoration, Segmentation, and Depth Maps 10. Chapter 10: Histograms, Contours, and Morphological Transformations 11. Chapter 11: Real-Life Applications of Computer Vision 12. Chapter 12: Working with Mahotas and Jupyter 13. Chapter 13: Appendix 14. Other Books You May Enjoy

Creating a negative of an image

In terms of pure mathematics, when we invert the colors of an image, it creates a negative of the image. This inversion operation can be computed by subtracting the color of a pixel from 255. If it is a color image, we invert the color of all the planes. For a grayscale image, we can directly compute the inversion by subtracting it from 255, as follows:

import cv2
img = cv2.imread('/home/pi/book/dataset/4.2.07.tiff', 0)
negative = abs(255 - img)
cv2.imshow('Grayscale', img)
cv2.imshow('Negative', negative)
cv2.waitKey(0)
cv2.destroyAllWindows()

The following is the output of this:

Figure 5.6 – A negative of an image

Figure 5.6 – A negative of an image

Try to find the negative of a color image, we just need to read the image in color mode in the preceding program.

Note:

The negative of a negative will be the original grayscale image. Try this on your own by computing the negative of the negative again for our...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image