Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Deep Learning

You're reading from   Python Deep Learning Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789348460
Length 386 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (5):
Arrow left icon
Gianmario Spacagna Gianmario Spacagna
Author Profile Icon Gianmario Spacagna
Gianmario Spacagna
Daniel Slater Daniel Slater
Author Profile Icon Daniel Slater
Daniel Slater
Valentino Zocca Valentino Zocca
Author Profile Icon Valentino Zocca
Valentino Zocca
Peter Roelants Peter Roelants
Author Profile Icon Peter Roelants
Peter Roelants
Ivan Vasilev Ivan Vasilev
Author Profile Icon Ivan Vasilev
Ivan Vasilev
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Machine Learning - an Introduction FREE CHAPTER 2. Neural Networks 3. Deep Learning Fundamentals 4. Computer Vision with Convolutional Networks 5. Advanced Computer Vision 6. Generating Images with GANs and VAEs 7. Recurrent Neural Networks and Language Models 8. Reinforcement Learning Theory 9. Deep Reinforcement Learning for Games 10. Deep Learning in Autonomous Vehicles 11. Other Books You May Enjoy

Introduction to machine learning

Machine learning is often associated with terms such as big data and artificial intelligence (AI). However, both are quite different to machine learning. In order to understand what machine learning is and why it's useful, it's important to understand what big data is and how machine learning applies to it.

Big data is a term used to describe huge datasets that are created as the result of large increases in data that is gathered and stored. For example, this may be through cameras, sensors, or internet social sites.

It's estimated that Google alone processes over 20 petabytes of information per day, and this number is only going to increase. IBM estimated that every day, 2.5 quintillion bytes of data is created, and that 90% of all the data in the world has been created in the last two years (https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/).

Clearly, humans alone are unable to grasp, let alone analyze, such huge amounts of data, and machine learning techniques are used to make sense of these very large datasets. Machine learning is the tool used for large-scale data processing. It is well-suited to complex datasets that have huge numbers of variables and features. One of the strengths of many machine learning techniques, and deep learning in particular, is that they perform best when used on large datasets, thus improving their analytic and predictive power. In other words, machine learning techniques, and deep learning neural networks in particular, learn best when they can access large datasets where they can discover patterns and regularities hidden in the data.

On the other hand, machine learning's predictive ability can be successfully adapted to artificial intelligence systems. Machine learning can be thought of as the brain of an AI system. AI can be defined (though this definition may not be unique) as a system that can interact with its environment. Also, AI machines are endowed with sensors that enable them to know the environment they are in, and tools with which they can relate back to the environment. Machine learning is therefore the brain that allows the machine to analyze the data ingested through its sensors to formulate an appropriate answer. A simple example is Siri on an iPhone. Siri hears the command through its microphone and outputs an answer through its speakers or its display, but to do so, it needs to understand what it's being told. Similarly, driverless cars will be equipped with cameras, GPS systems, sonars, and LiDAR, but all this information needs to be processed in order to provide a correct answer. This may include whether to accelerate, brake, or turn. Machine learning is the information-processing method that leads to the answer.

We explained what machine learning is, but what about deep learning (DL)? For now, let's just say that deep learning is a subfield of machine learning. DL methods share some special common features. The most popular representatives of such methods are deep neural networks.

You have been reading a chapter from
Python Deep Learning - Second Edition
Published in: Jan 2019
Publisher: Packt
ISBN-13: 9781789348460
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime