Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
OpenCV 3 Computer Vision with Python Cookbook

You're reading from   OpenCV 3 Computer Vision with Python Cookbook Leverage the power of OpenCV 3 and Python to build computer vision applications

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781788474443
Length 306 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Aleksandr Rybnikov Aleksandr Rybnikov
Author Profile Icon Aleksandr Rybnikov
Aleksandr Rybnikov
Aleksei Spizhevoi Aleksei Spizhevoi
Author Profile Icon Aleksei Spizhevoi
Aleksei Spizhevoi
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. I/O and GUI FREE CHAPTER 2. Matrices, Colors, and Filters 3. Contours and Segmentation 4. Object Detection and Machine Learning 5. Deep Learning 6. Linear Algebra 7. Detectors and Descriptors 8. Image and Video Processing 9. Multiple View Geometry 10. Other Books You May Enjoy

Obtaining a frame stream properties

In this recipe, you will learn how to get such VideoCapture properties as frame height and width, frame count for video files, and camera frame rate.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

Execute the following steps:

  1. Let's create an auxiliary function that will take the VideoCapture ID (either what the camera device is or the path to the video), create a VideoCapture object, and request the frame height and width, count, and rate:
import numpy
import cv2

def print_capture_properties(*args):
capture = cv2.VideoCapture(*args)
print('Created capture:', ' '.join(map(str, args)))
print('Frame count:', int(capture.get(cv2.CAP_PROP_FRAME_COUNT)))
print('Frame width:', int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)))
print('Frame height:', int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
print('Frame rate:', capture.get(cv2.CAP_PROP_FPS))
  1. Let's call this function for a video file:
print_capture_properties('../data/drop.avi')
  1. Now let's request properties for the camera capture object:
print_capture_properties(0)

How it works...

As in the earlier recipes, working with cameras and video frame streams is done through the cv2.VideoCapture class. You can get properties using the capture.get function, which takes the property ID and returns its value as a floating-point value.

Note that, depending on the OS and video backend used, not all of the properties being requested can be accessed.

The following output is expected (it might vary depending on the OS and the video backend that OpenCV was compiled with):

Created capture: ../data/drop.avi
Frame count: 182
Frame width: 256
Frame height: 240
Frame rate: 30.0

Created capture: 0
Frame count: -1
Frame width: 640
Frame height: 480
Frame rate: 30.0

You have been reading a chapter from
OpenCV 3 Computer Vision with Python Cookbook
Published in: Mar 2018
Publisher: Packt
ISBN-13: 9781788474443
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image