Search icon CANCEL
Subscription
0
Cart icon
Cart
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Kubernetes

You're reading from  Mastering Kubernetes

Product type Book
Published in May 2017
Publisher Packt
ISBN-13 9781786461001
Pages 426 pages
Edition 1st Edition
Languages
Author (1):
Gigi Sayfan Gigi Sayfan
Profile icon Gigi Sayfan
Toc

Table of Contents (22) Chapters close

Mastering Kubernetes
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
1. Understanding Kubernetes Architecture 2. Creating Kubernetes Clusters 3. Monitoring, Logging, and Troubleshooting 4. High Availability and Reliability 5. Configuring Kubernetes Security, Limits, and Accounts 6. Using Critical Kubernetes Resources 7. Handling Kubernetes Storage 8. Running Stateful Applications with Kubernetes 9. Rolling Updates, Scalability, and Quotas 10. Advanced Kubernetes Networking 11. Running Kubernetes on Multiple Clouds and Cluster Federation 12. Customizing Kubernetes - API and Plugins 13. Handling the Kubernetes Package Manager 14. The Future of Kubernetes Index

Handling scarce resources with limits and quotas


With the horizontal pod autoscaler creating pods on the fly, we need to think about managing our resources. Scheduling can easily get out of control, and inefficient use of resources is a real concern. There are several factors that can interact with each other in subtle ways:

  • Overall cluster capacity

  • Resource granularity per node

  • Division of workloads per namespace

  • Daemon sets

  • Stateful sets

First, let's understand the core issue. The Kubernetes scheduler has to take into account all these factors when it schedules pods. If there are conflicts or a lot of overlapping requirements, then Kubernetes may have a problem finding room to schedule new pods. For example, a very extreme yet simple scenario is that a DaemonSet runs on every node a pod that requires 50% of the available memory. Now, Kubernetes can't schedule any pod that needs more than 50% memory because the DaemonSet pod gets priority. Even if you provision new nodes, the DaemonSet will immediately...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime}