Search icon CANCEL
Subscription
0
Cart icon
Cart
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Kubernetes

You're reading from  Mastering Kubernetes

Product type Book
Published in May 2017
Publisher Packt
ISBN-13 9781786461001
Pages 426 pages
Edition 1st Edition
Languages
Author (1):
Gigi Sayfan Gigi Sayfan
Profile icon Gigi Sayfan
Toc

Table of Contents (22) Chapters close

Mastering Kubernetes
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
1. Understanding Kubernetes Architecture 2. Creating Kubernetes Clusters 3. Monitoring, Logging, and Troubleshooting 4. High Availability and Reliability 5. Configuring Kubernetes Security, Limits, and Accounts 6. Using Critical Kubernetes Resources 7. Handling Kubernetes Storage 8. Running Stateful Applications with Kubernetes 9. Rolling Updates, Scalability, and Quotas 10. Advanced Kubernetes Networking 11. Running Kubernetes on Multiple Clouds and Cluster Federation 12. Customizing Kubernetes - API and Plugins 13. Handling the Kubernetes Package Manager 14. The Future of Kubernetes Index

Understanding the Kubernetes networking model


The Kubernetes networking model is based on a flat address space. All pods in a cluster can directly see each other. Each pod has its own IP address. There is no need to configure any NAT. In addition, containers in the same pod share their pod's IP address and can communicate with each other through localhost. This model is pretty opinionated, but once set up, it simplifies life considerably both for developers and administrators. It makes it particularly easy to migrate traditional network applications to Kubernetes. A pod represents a traditional node and each container represents a traditional process.

Intra-pod communication (container to container)

A running pod is always scheduled on one (physical or virtual) node. That means that all the containers run on the same node and can talk to each other in various ways, such as the local filesystem, any IPC mechanism, or using localhost and well-known ports. There is no danger of port collision...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime}