Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for Finance

You're reading from   Machine Learning for Finance Principles and practice for financial insiders

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789136364
Length 456 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jannes Klaas Jannes Klaas
Author Profile Icon Jannes Klaas
Jannes Klaas
James Le James Le
Author Profile Icon James Le
James Le
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Machine Learning for Finance
Contributors
Preface
Other Books You May Enjoy
1. Neural Networks and Gradient-Based Optimization FREE CHAPTER 2. Applying Machine Learning to Structured Data 3. Utilizing Computer Vision 4. Understanding Time Series 5. Parsing Textual Data with Natural Language Processing 6. Using Generative Models 7. Reinforcement Learning for Financial Markets 8. Privacy, Debugging, and Launching Your Products 9. Fighting Bias 10. Bayesian Inference and Probabilistic Programming Index

A brief primer on tree-based methods


No chapter on structured data would be complete without mentioning tree-based methods, such as random forests or XGBoost.

It is worth knowing about them because, in the realm of predictive modeling for structured data, tree-based methods are very successful. However, they do not perform as well on more advanced tasks, such as image recognition or sequence-to-sequence modeling. This is the reason why the rest of the book does not deal with tree-based methods.

Note

Note: For a deeper dive into XGBoost, check out the tutorials on the XGBoost documentation page: http://xgboost.readthedocs.io. There is a nice explanation of how tree-based methods and gradient boosting work in theory and practice under the Tutorials section of the website.

A simple decision tree

The basic idea behind tree-based methods is the decision tree. A decision tree splits up data to create the maximum difference in outcomes.

Let's assume for a second that our isNight feature is the greatest...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image