Until now, we have trained models on single instances, iterating an algorithm in order to minimize a target loss function. This approach is based on so-called strong learners, or methods that are optimized to solve a specific problem by looking for the best possible solution (highest accuracy). Another approach is based on a set of weak learners, which, formally, are estimators that are able to achieve an accuracy slightly higher than 0.5. In the real world, the actual estimators used in Ensemble Learning are much more accurate than their theoretical counterparts, but generally they are able to specialize a single region of the sample space and show bad performance while considering the whole dataset. Moreover, they can be trained in parallel or sequentially (with slight modifications to the parameters) and used as an ensemble (group) based on...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia