Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Concurrent Programming in Scala

You're reading from   Learning Concurrent Programming in Scala Dive into the Scala framework with this programming guide, created to help you learn Scala and to build intricate, modern, scalable concurrent applications

Arrow left icon
Product type Paperback
Published in Nov 2014
Publisher Packt
ISBN-13 9781783281411
Length 366 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Aleksandar Prokopec Aleksandar Prokopec
Author Profile Icon Aleksandar Prokopec
Aleksandar Prokopec
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Introduction 2. Concurrency on the JVM and the Java Memory Model FREE CHAPTER 3. Traditional Building Blocks of Concurrency 4. Asynchronous Programming with Futures and Promises 5. Data-Parallel Collections 6. Concurrent Programming with Reactive Extensions 7. Software Transactional Memory 8. Actors 9. Concurrency in Practice Index

Exercises

The following exercises are designed to test your knowledge of the Scala programming language. They cover the content presented in this chapter, along with some additional Scala features. The last two exercises contrast the difference between concurrent and distributed programming, as defined in this chapter. You should solve them by sketching out a pseudocode solution, rather than a complete Scala program.

  1. Implement a compose method with the following signature:
    def compose[A, B, C](g: B => C, f: A => B): A => C = ???

    This method must return a function h, which is the composition of the functions f and g.

  2. Implement a fuse method with the following signature:
    def fuse[A, B](a: Option[A], b: Option[B]): Option[(A, B)] = ???

    The resulting Option object should contain a tuple of values from the Option objects a and b, given that both a and b are non-empty. Use for-comprehensions.

  3. Implement a check method, which takes a set of values of the type T and a function of the type T => Boolean:
    def check[T](xs: Seq[T])(pred: T => Boolean): Boolean = ???

    The method must return true if and only if the pred function returns true for all the values in xs without throwing an exception. Use the check method as follows:

    check(0 until 10)(40 / _ > 0)

    Tip

    The check method has a curried definition: instead of just one parameter list, it has two of them. Curried definitions allow a nicer syntax when calling the function, but are otherwise semantically equivalent to single-parameter list definitions.

  4. Modify the Pair class from this chapter so that it can be used in a pattern match.

    Tip

    If you haven't already, familiarize yourself with pattern matching in Scala.

  5. Implement a permutations function, which, given a string, returns a sequence of strings that are lexicographic permutations of the input string:
    def permutations(x: String): Seq[String]
  6. Consider yourself and three of your colleagues working in an office divided into cubicles. You cannot see each other, and you are not allowed to verbally communicate, as that might disturb other workers. Instead, you can throw pieces of paper with short messages at each other. Since you are confined in a cubicle, neither of you can tell if the message has reached its destination. At any point, you or one of your colleagues may be called to the boss's office and kept there indefinitely. Design an algorithm in which you and your colleagues can decide when to meet at the local bar. With the exception of the one among you who was called to the boss's office, all of you have to decide on the same time. What if some of the paper pieces can arbitrarily miss the target cubicle?
  7. Imagine that in the previous exercise, you and your colleagues also have a whiteboard in the hall next to the office. Each one of you can occasionally pass through the hall and write something on the whiteboard, but there is no guarantee that either of you will be in the hall at the same time.

    Solve the problem from the previous exercise, this time using the whiteboard.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime