Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Jupyter Cookbook

You're reading from   Jupyter Cookbook Over 75 recipes to perform interactive computing across Python, R, Scala, Spark, JavaScript, and more

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788839440
Length 238 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dan Toomey Dan Toomey
Author Profile Icon Dan Toomey
Dan Toomey
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Installation and Setting up the Environment FREE CHAPTER 2. Adding an Engine 3. Accessing and Retrieving Data 4. Visualizing Your Analytics 5. Working with Widgets 6. Jupyter Dashboards 7. Sharing Your Code 8. Multiuser Jupyter 9. Interacting with Big Data 10. Jupyter Security 11. Jupyter Labs

Computing prime numbers using parallel operations


A good method for determining whether a number is prime or not is Eratosthenes's sieve. For each number, we check whether it fits the bill for a prime (if it meets the criteria for a prime, it will filter through the sieve).

The series of tests are run on every number we check for prime. This is a great usage for parallel operations. Spark has the in-built ability to split up a task among the threads/machines available. The threads are configured through the SparkContext (we see that in every example).

In our case, we split up the workload among the available threads, each taking a set of numbers to check, and collect the results later on.

How to do it...

We can use a script like this:

import pyspark
if not 'sc' in globals():
    sc = pyspark.SparkContext()

#check if a number is prime
def isprime(n):
    # must be positive
    n = abs(int(n))

    # 2 or more
    if n < 2:
        return False

    # 2 is the only even prime number
    if...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image