Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Journey to Become a Google Cloud Machine Learning Engineer

You're reading from   Journey to Become a Google Cloud Machine Learning Engineer Build the mind and hand of a Google Certified ML professional

Arrow left icon
Product type Paperback
Published in Sep 2022
Publisher Packt
ISBN-13 9781803233727
Length 330 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Dr. Logan Song Dr. Logan Song
Author Profile Icon Dr. Logan Song
Dr. Logan Song
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Part 1: Starting with GCP and Python
2. Chapter 1: Comprehending Google Cloud Services FREE CHAPTER 3. Chapter 2: Mastering Python Programming 4. Part 2: Introducing Machine Learning
5. Chapter 3: Preparing for ML Development 6. Chapter 4: Developing and Deploying ML Models 7. Chapter 5: Understanding Neural Networks and Deep Learning 8. Part 3: Mastering ML in GCP
9. Chapter 6: Learning BQ/BQML, TensorFlow, and Keras 10. Chapter 7: Exploring Google Cloud Vertex AI 11. Chapter 8: Discovering Google Cloud ML API 12. Chapter 9: Using Google Cloud ML Best Practices 13. Part 4: Accomplishing GCP ML Certification
14. Chapter 10: Achieving the GCP ML Certification 15. Part 5: Appendices
16. Index 17. Other Books You May Enjoy Appendix 1: Practicing with Basic GCP Services 1. Appendix 2: Practicing Using the Python Data Libraries 2. Appendix 3: Practicing with Scikit-Learn 3. Appendix 4: Practicing with Google Vertex AI 4. Appendix 5: Practicing with Google Cloud ML API

Introduction to Keras

Keras is a Google platform and a high-level interface to build ML/DL models with TensorFlow. Keras provides a high-level API that encapsulates data transformations and operations using logic units, called layers, as the building blocks to create neural networks. A layer performs data manipulation operations such as taking an average, calculating the minimum, and so on.

With Keras, ML models are built from layers. During the ML model training process, the variables in the layers are adjusted, via backpropagation, to optimize the model cost function. Behind the scenes, TensorFlow and Keras complete detailed data operations, such as linear algebra and calculus calculations, in the background. Keras provides the following two APIs:

  • The sequential API provides the simplest interface and least complexity. With the sequential API, we can create the model layer by layer and thus build an ML/DL model as a simple list of layers.
  • The functional API is more...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime