Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Reinforcement Learning for Games

You're reading from   Hands-On Reinforcement Learning for Games Implementing self-learning agents in games using artificial intelligence techniques

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781839214936
Length 432 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Micheal Lanham Micheal Lanham
Author Profile Icon Micheal Lanham
Micheal Lanham
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Exploring the Environment
2. Understanding Rewards-Based Learning FREE CHAPTER 3. Dynamic Programming and the Bellman Equation 4. Monte Carlo Methods 5. Temporal Difference Learning 6. Exploring SARSA 7. Section 2: Exploiting the Knowledge
8. Going Deep with DQN 9. Going Deeper with DDQN 10. Policy Gradient Methods 11. Optimizing for Continuous Control 12. All about Rainbow DQN 13. Exploiting ML-Agents 14. DRL Frameworks 15. Section 3: Reward Yourself
16. 3D Worlds 17. From DRL to AGI 18. Other Books You May Enjoy

Building policy iteration

For us to determine the best policy, we first need a method to evaluate the given policy for a state. We can use a method of evaluating the policy by searching through all of the states of an MDP and further evaluating all actions. This will provide us with a value function for the given state that we can then use to perform successive updates of a new value function iteratively. Mathematically, we can then use the previous Bellman optimality equation and derive a new update to a state value function, as shown here:

In the preceding equation, the symbol represents an expectation and denotes the expected state value update to a new value function. Inside this expectation, we can see this dependent on the returned reward plus the previous discounted value for the next state given an already chosen action. That means that our algorithm will iterate over...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image