In Chapter 4, Transforming Text into Data Structures, we discussed the bag-of-words and term-frequency and inverse document frequency-based methods to represent text in the form of numbers. These methods mostly rely on the syntactical aspects of a word in terms of its presence or absence in a document or across a text corpus. However, information about the neighborhood of the word, in terms of what words come after or before a word, wasn't taken into account in the approaches we have discussed so far. The neighborhood of a word carries important information in terms of what context the word is carrying in a sentence. The relationship between the word and its neighborhood tends to define the semantics of a word and its overall positioning and presence in a sentence. In this chapter, we will use this idea to build word vectors...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine