Then, we simply add a few more layers of convolution, batch normalization, and dropouts, progressively building our network until we reach the final layers. Just like in the MNIST example, we will leverage densely connected layers to implement the classification mechanism in our network. Before we can do this, we must flatten our input from the previous layer (16 x 16 x 32) to a 1D vector of dimension (8,192). We do this because dense layer-based classifiers prefer to receive 1D vectors, unlike the output from our previous layer. We proceed by adding two densely connected layers, the first one with 128 neurons (an arbitrary choice) and the second one with just one neuron, since we are dealing with a binary classification problem. If everything goes according to plan, this one neuron will be supported by its cabinet of neurons...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine