Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Neural Networks

You're reading from   Hands-On Neural Networks Learn how to build and train your first neural network model using Python

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781788992596
Length 280 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Leonardo De Marchi Leonardo De Marchi
Author Profile Icon Leonardo De Marchi
Leonardo De Marchi
Laura Mitchell Laura Mitchell
Author Profile Icon Laura Mitchell
Laura Mitchell
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Getting Started FREE CHAPTER
2. Getting Started with Supervised Learning 3. Neural Network Fundamentals 4. Section 2: Deep Learning Applications
5. Convolutional Neural Networks for Image Processing 6. Exploiting Text Embedding 7. Working with RNNs 8. Reusing Neural Networks with Transfer Learning 9. Section 3: Advanced Applications
10. Working with Generative Algorithms 11. Implementing Autoencoders 12. Deep Belief Networks 13. Reinforcement Learning 14. Whats Next? 15. Other Books You May Enjoy

What this book covers

Chapter 1, Getting Started with Supervised Learning, covers the big picture of AI and, in particular, deep learning. This chapter introduces the main machine learning concepts, from transforming data to evaluating results. These concepts will be useful in the following chapters, where we will focus only on deep learning applications.

Chapter 2, Neural Network Fundamentals, introduces the building blocks of deep learning and the math behind them. We will also explore concepts such as the perceptron and gradient descent, and the math behind them. We will then see how it's possible to use them to build neural networks with an example, to solve a classification task.

Chapter 3, Convolutional Neural Networks for Image Processing, covers more complex network architectures for solving domain-specific problems. In particular, we will look at some techniques for solving some computer vision problems. We will also see how a pre-trained network can reduce the time needed to create and train a neural network.

Chapter 4, Exploiting Text Embedding, shows how deep learning can be used for NLP tasks; in particular, how we can use embeddings to process textual data, the theory behind them, and some practical use cases.

Chapter 5, Working with RNNs, introduces a more sophisticated type of network, RNNs, and the math and the concepts behind them. In particular, we will focus on LSTM and how it can be used to solve an NLP problem.

Chapter 6, Reusing Neural Networks with Transfer Learning, introduces transfer learning, which is the ability of a model to generalize its learning to different tasks than the one it was trained to solve. We will also look at a concrete example of transfer learning using a pre-trained network to solve our particular problem using Keras and the famous VGG network.

Chapter 7, Working with Generative Algorithms, introduces one of the most innovative concepts in machine learning in the past decade: GANs. We will see how they work and the math behind them. We will also present an example of how to implement a GAN to generate simple handwritten digits.

Chapter 8, Implementing Autoencoders, talks about autoencoders, what they are, the math behind them, and which tasks they can solve. In particular, we will look at improvements to the simple autoencoders algorithm and how it's possible to use autoencoders to generate simple handwritten digits with Keras.

Chapter 9, Deep Belief Networks, talks about Deep Belief Networks (DBNs), what they are, the math behind them, and which tasks they can solve.

Chapter 10, Reinforcement Learning, introduces RL, starting from the basic concepts, such as the Monte Carlo and Markov chain methods. We will then explain traditional RL methods and how deep learning has improved and revitalized the field.

Chapter 11, What’s Next?, introduces a quick summary of all the topics that we have covered in the book. We will also provide readers with the details of other titles that could be used as reference materials. Lastly, we will also include the latest advancements that readers can look at in the field of neural networks.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image