A metric or a distance measure is an essential concept in clustering because it is used to determine the similarity between objects. However, before applying a distance measure to objects, we have to make a vector of object characteristics; usually, this is a set of numerical values such as human height or weight. Also, some algorithms can work with categorical object features (or characteristics). The standard practice is to normalize feature values. Normalization ensures that each feature gives the same impact in a distance measure calculation. There are many distance measure functions that can be used in the scope of the clustering task. The most popular ones used for numerical properties are Euclidean distance, Squared Euclidean distance, Manhattan distance, and Chebyshev distance. The following subsections describe them in detail.
...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine