Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On GPU Programming with Python and CUDA

You're reading from   Hands-On GPU Programming with Python and CUDA Explore high-performance parallel computing with CUDA

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781788993913
Length 310 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dr. Brian Tuomanen Dr. Brian Tuomanen
Author Profile Icon Dr. Brian Tuomanen
Dr. Brian Tuomanen
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Why GPU Programming? 2. Setting Up Your GPU Programming Environment FREE CHAPTER 3. Getting Started with PyCUDA 4. Kernels, Threads, Blocks, and Grids 5. Streams, Events, Contexts, and Concurrency 6. Debugging and Profiling Your CUDA Code 7. Using the CUDA Libraries with Scikit-CUDA 8. The CUDA Device Function Libraries and Thrust 9. Implementation of a Deep Neural Network 10. Working with Compiled GPU Code 11. Performance Optimization in CUDA 12. Where to Go from Here 13. Assessment 14. Other Books You May Enjoy

Questions

  1. There are three for statements in this chapter's Mandelbrot example; however, we can only parallelize over the first two. Why can't we parallelize over all of the for loops here?
  2. What is something that Amdahl's Law doesn't account for when we apply it to offloading a serial CPU algorithm to a GPU?
  3. Suppose that you gain exclusive access to three new top-secret GPUs that are the same in all respects, except for core counts—the first has 131,072 cores, the second has 262,144 cores, and the third has 524,288 cores. If you parallelize and offload the Mandelbrot example onto these GPUs (which generates a 512 x 512 pixel image), will there be a difference in computation time between the first and second GPU? How about between the second and third GPU?
  4. Can you think of any problems with designating certain algorithms or blocks of code as parallelizable in the context of Amdahl's Law?
  5. Why should we use profilers instead of just using Python's time function?
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime