Being able to efficiently extract and transform data for the training of complex applications is primordial, but this is assuming that enough data is available for such tasks in the first place. After all, NNs are data-hungry methods and even though we are in the big data era, large enough datasets are still tenuous to gather and even more difficult to annotate. It can take several minutes to annotate a single image (for instance, to create the ground truth label map for semantic segmentation models), and some annotations may have to be validated/corrected by experts (for instance, when labeling medical pictures). In some cases, images themselves may not be easily available. For instance, it would be too time- and money-consuming to take pictures of every manufactured object and their components when building automation models for industrial plants...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine