Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Functional Python Programming

You're reading from   Functional Python Programming Create succinct and expressive implementations with functional programming in Python

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781784396992
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Steven F. Lott Steven F. Lott
Author Profile Icon Steven F. Lott
Steven F. Lott
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Introducing Functional Programming FREE CHAPTER 2. Introducing Some Functional Features 3. Functions, Iterators, and Generators 4. Working with Collections 5. Higher-order Functions 6. Recursions and Reductions 7. Additional Tuple Techniques 8. The Itertools Module 9. More Itertools Techniques 10. The Functools Module 11. Decorator Design Techniques 12. The Multiprocessing and Threading Modules 13. Conditional Expressions and the Operator Module 14. The PyMonad Library 15. A Functional Approach to Web Services 16. Optimizations and Improvements Index

Recursion instead of a explicit loop state

Functional programs don't rely on loops and the associated overhead of tracking the state of loops. Instead, functional programs try to rely on the much simpler approach of recursive functions. In some languages, the programs are written as recursions, but Tail-Call Optimization (TCO) by the compiler changes them to loops. We'll introduce some recursion here and examine it closely in Chapter 6, Recursions and Reductions.

We'll look at a simple iteration to test a number for being prime. A prime number is a natural number, evenly divisible by only 1 and itself. We can create a naïve and poorly performing algorithm to determine if a number has any factors between two and the number. This algorithm has the advantage of simplicity; it works acceptably for solving Project Euler problems. Read up on Miller-Rabin primality tests for a much better algorithm.

We'll use the term coprime to mean that two numbers have only 1 as their...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime