Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Exploring GPT-3
Exploring GPT-3

Exploring GPT-3: An unofficial first look at the general-purpose language processing API from OpenAI

eBook
€8.99 €31.99
Paperback
€38.99
Audiobook
€8.99 €41.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Exploring GPT-3

Chapter 1: Introducing GPT-3 and the OpenAI API

The buzz about Generative Pre-trained Transformer Version 3 (GPT-3) started with a blog post from a leading Artificial Intelligence (AI) research lab, OpenAI, on June 11, 2020. The post began as follows:

We're releasing an API for accessing new AI models developed by OpenAI. Unlike most AI systems which are designed for one use-case, the API today provides a general-purpose "text in, text out" interface, allowing users to try it on virtually any English language task.

Online demos from early beta testers soon followed—some seemed too good to be true. GPT-3 was writing articles, penning poetry, answering questions, chatting with lifelike responses, translating text from one language to another, summarizing complex documents, and even writing code. The demos were incredibly impressive—things we hadn't seen a general-purpose AI system do before—but equally impressive was that many of the demos were created by people with a limited or no formal background in AI and Machine Learning (ML). GPT-3 had raised the bar, not just in terms of the technology, but also in terms of AI accessibility.

GPT-3 is a general-purpose language processing AI model that practically anybody can understand and start using in a matter of minutes. You don't need a Doctor of Philosophy (PhD) in computer science—you don't even need to know how to write code. In fact, everything you'll need to get started is right here in this book. We'll begin in this chapter with the following topics:

  • Introduction to GPT-3
  • Democratizing NLP
  • Understanding prompts, completions, and tokens
  • Introducing Davinci, Babbage, Curie, and Ada
  • Understanding GPT-3 risks

Technical requirements

This chapter requires you to have access to the OpenAI Application Programming Interface (API). You can register for API access by visiting https://openai.com/.

Introduction to GPT-3

In short, GPT-3 is a language model: a statistical model that calculates the probability distribution over a sequence of words. In other words, GPT-3 is a system for guessing which text comes next when text is given as an input.

Now, before we delve further into what GPT-3 is, let's cover a brief introduction (or refresher) on Natural Language Processing (NLP).

Simplifying NLP

NLP is a branch of AI that focuses on the use of natural human language for various computing applications. NLP is a broad category that encompasses many different types of language processing tasks, including sentiment analysis, speech recognition, machine translation, text generation, and text summarization, to name but a few.

In NLP, language models are used to calculate the probability distribution over a sequence of words. Language models are essential because of the extremely complex and nuanced nature of human languages. For example, pay in full and painful or tee time and teatime sound alike but have very different meanings. A phrase such as she's on fire could be literal or figurative, and words such as big and large can be used interchangeably in some cases but not in others—for example, using the word big to refer to an older sibling wouldn't have the same meaning as using the word large. Thus, language models are used to deal with this complexity, but that's easier said than done.

While understanding things such as word meanings and their appropriate usage seems trivial to humans, NLP tasks can be challenging for machines. This is especially true for more complex language processing tasks such as recognizing irony or sarcasm—tasks that even challenge humans at times.

Today, the best technical approach to a given NLP task depends on the task. So, most of the best-performing, state-of-the-art (SOTA) NLP systems are specialized systems that have been fine-tuned for a single purpose or a narrow range of tasks. Ideally, however, a single system could successfully handle any NLP task. That's the goal of GPT-3: to provide a general-purpose AI system for NLP. So, even though the best-performing NLP systems today tend to be specialized, purpose-built systems, GPT-3 achieves SOTA performance on a number of common NLP tasks, showing the potential for a future general-purpose NLP system that could provide SOTA performance for any NLP task.

What exactly is GPT-3?

Although GPT-3 is a general-purpose NLP system, it really just does one thing: it predicts what comes next based on the text that is provided as input. But it turns out that, with the right architecture and enough data, this one thing can handle a stunning array of language processing tasks.

GPT-3 is the third version of the GPT language model from OpenAI. So, although it started to become popular in the summer of 2020, the first version of GPT was announced 2 years earlier, and the following version, GPT-2, was announced in February 2019. But even though GPT-3 is the third version, the general system design and architecture hasn't changed much from GPT-2. There is one big difference, however, and that's the size of the dataset that was used for training.

GPT-3 was trained with a massive dataset comprised of text from the internet, books, and other sources, containing roughly 57 billion words and 175 billion parameters. That's 10 times larger than GPT-2 and the next-largest language model. To put the model size into perspective, the average human might read, write, speak, and hear upward of a billion words in an entire lifetime. So, GPT-3 has been trained on an estimated 57 times the number of words most humans will ever process.

The GPT-3 language model is massive, so it isn't something you'll be downloading and dabbling with on your laptop. But even if you could (which you can't because it's not available to download), it would cost millions of dollars in computing resources each time you wanted to build the model. This would put GPT-3 out of reach for most small companies and virtually all individuals if you had to rely on your own computer resource to use it. Thankfully, you don't. OpenAI makes GPT-3 available through an API that is both affordable and easy to use. So, anyone can use some of the most advanced AI ever created!

Democratizing NLP

Anyone can use GPT-3 with access to the OpenAI API. The API is a general-purpose text in, text out interface that could be used for virtually any language task. To use the API, you simply pass in text and get a text response back. The task might be to do sentiment analysis, write an article, answer a question, or summarize a document. It doesn't matter, as far as the API is concerned—it's all done the same way, which makes using the API easy enough for just about anyone to use, even non-programmers.

The text you pass in is referred to as a prompt, and the returned text is called a completion. A prompt is used by GPT-3 to determine how best to complete the task. In the simplest case, a prompt can provide a few words to get started with. For example, if the prompt was If today is Monday, tomorrow is, GPT-3 would likely respond with Tuesday, along with some additional text such as If today is Tuesday, tomorrow is Wednesday, and so on. This means that what you get out of GPT-3 depends on what you send to it.

As you might guess, the quality of a completion depends heavily on the prompt. GPT-3 uses all of the text in a prompt to help generate the most relevant completion. Each and every word, along with how the prompt is structured, helps improve the language model prediction results. So, understanding how to write and test prompts is the key to unlocking GPT-3's true potential.

Understanding prompts, completions, and tokens

Literally any text can be used as a prompt—send some text in and get some text back. However, as entertaining as it can be to see what GPT-3 does with random strings, the real power comes from understanding how to write effective prompts.

Prompts

Prompts are how you get GPT-3 to do what you want. It's like programming, but with plain English. So, you have to know what you're trying to accomplish, but rather than writing code, you use words and plain text.

When you're writing prompts, the main thing to keep in mind is that GPT-3 is trying to figure out which text should come next, so including things such as instructions and examples provides context that helps the model figure out the best possible completion. Also, quality matters— for example, spelling, unclear text, and the number of examples provided will have an effect on the quality of the completion.

Another key consideration is the prompt size. While a prompt can be any text, the prompt and the resulting completion must add up to fewer than 2,048 tokens. We'll discuss tokens a bit later in this chapter, but that's roughly 1,500 words.

So, a prompt can be any text, and there aren't hard and fast rules that must be followed like there are when you're writing code. However, there are some guidelines for structuring your prompt text that can be helpful in getting the best results.

Different kinds of prompts

We'll dive deep into prompt writing throughout this book, but let's start with the different prompt types. These are outlined as follows:

  • Zero-shot prompts
  • One-shot prompts
  • Few-shot prompts

Zero-shot prompts

A zero-shot prompt is the simplest type of prompt. It only provides a description of a task, or some text for GPT-3 to get started with. Again, it could literally be anything: a question, the start of a story, instructions—anything, but the clearer your prompt text is, the easier it will be for GPT-3 to understand what should come next. Here is an example of a zero-shot prompt for generating an email message. The completion will pick up where the prompt ends—in this case, after Subject::

Write an email to my friend Jay from me Steve thanking him for covering my shift this past Friday. Tell him to let me know if I can ever return the favor.
Subject:

The following screenshot is taken from a web-based testing tool called the Playground. We'll discuss the Playground more in Chapter 2, GPT-3 Applications and Use Cases, and Chapter 3, Working with the OpenAI Playground, but for now we'll just use it to show the completion generated by GPT-3 as a result of the preceding prompt. Note that the original prompt text is bold, and the completion shows as regular text:

Figure 1.1 – Zero-shot prompt example

Figure 1.1 – Zero-shot prompt example

So, a zero-shot prompt is just a few words or a short description of a task without any examples. Sometimes this is all GPT-3 needs to complete the task. Other times, you may need to include one or more examples. A prompt that provides a single example is referred to as a one-shot prompt.

One-shot prompts

A one-shot prompt provides one example that GPT-3 can use to learn how to best complete a task. Here is an example of a one-shot prompt that provides a task description (the first line) and a single example (the second line):

A list of actors in the movie Star Wars 
1. Mark Hamill: Luke Skywalker

From just the description and the one example, GPT-3 learns what the task is and that it should be completed. In this example, the task is to create a list of actors from the movie Star Wars. The following screenshot shows the completion generated from this prompt:

Figure 1.2 – One-shot prompt example

Figure 1.2 – One-shot prompt example

The one-shot prompt works great for lists and commonly understood patterns. But sometimes you'll need more than one example. When that's the case you'll use a few-shot prompt.

Few-shot prompts

A few-shot prompt provides multiple examples—typically, 10 to 100. Multiple examples can be useful for showing a pattern that GPT-3 should continue. Few-shot prompts and more examples will likely increase the quality of the completion because the prompt provides more for GPT-3 to learn from.

Here is an example of a few-shot prompt to generate a simulated conversation. Notice that the examples provide a back-and-forth dialog, with things that might be said in a conversation:

This is a conversation between Steve, the author of the book Exploring GPT-3 and someone who is reading the book.
Reader: Why did you decide to write the book?
Steve: Because I'm super fascinated by GPT-3 and emerging technology in general.
Reader: What will I learn from this book?
Steve: The book provides an introduction to GPT-3 from OpenAI. You'll learn what GPT-3 is and how to get started using it.
Reader: Do I need to be a coder to follow along?
Steve: No. Even if you've never written a line of code before, you'll be able to follow along just fine.
Reader: 

In the following screenshot, you can see that GPT-3 continues the simulated conversation that was started in the examples provided in the prompt:

Figure 1.3 – Few-shot prompt example

Figure 1.3 – Few-shot prompt example

Now that you understand the different prompt types, let's take a look at some prompt examples.

Prompt examples

The OpenAI API can handle a variety of tasks. The possibilities range from generating original stories to performing complex text analysis, and everything in between. To get familiar with the kinds of tasks GPT-3 can perform, OpenAI provides a number of prompt examples. You can find example prompts in the Playground and in the OpenAI documentation.

In the Playground, the examples are referred to as presets. Again, we'll cover the Playground in detail in Chapter 3, Working with the OpenAI Playground, but the following screenshot shows some of the presets that are available:

Figure 1.4 – Presets

Figure 1.4 – Presets

Example prompts are also available in the OpenAI documentation. The OpenAI documentation is excellent and includes a number of great prompt examples, with links to open and test them in the Playground. The following screenshot shows an example prompt from the OpenAI documentation. Notice the Open this example in Playground link below the prompt example. You can use that link to open the prompt in the Playground:

Figure 1.5 – OpenAI documentation provides prompt examples

Figure 1.5 – OpenAI documentation provides prompt examples

Now that you have an understanding of prompts, let's talk about how GPT-3 uses them to generate a completion.

Completions

Again, a completion refers to the text that is generated and returned as a result of the provided prompt/input. You'll also recall that GPT-3 was not specifically trained to perform any one type of NLP task—it's a general-purpose language processing system. However, GPT-3 can be shown how to complete a given task using a prompt. This is called meta-learning.

Meta-learning

With most NLP systems, the data used to teach the system how to complete a task is provided when the underlying ML model is trained. So, to improve results for a given task, the underlying training must be updated, and a new version of the model must be built. GPT-3 works differently, as it isn't trained for any specific task. Rather, it was designed to recognize patterns in the prompt text and to continue the pattern(s) by using the underlying general-purpose model. This approach is referred to as meta-learning because the prompt is used to teach GPT-3 how to generate the best possible completion, without the need for retraining. So, in effect, the different prompt types (zero-shot, one-shot, and few-shot) can be used to program GPT-3 for different types of tasks, and you can provide a lot of instructions in the prompt—up to 2,048 tokens. Alright—now is a good time to talk about tokens.

Tokens

When a prompt is sent to GPT-3, it's broken down into tokens. Tokens are numeric representations of words or—more often—parts of words. Numbers are used for tokens rather than words or sentences because they can be processed more efficiently. This enables GPT-3 to work with relatively large amounts of text. That said, as you've learned, there is still a limit of 2,048 tokens (approximately ~1,500 words) for the combined prompt and the resulting generated completion.

You can stay under the token limit by estimating the number of tokens that will be used in your prompt and resulting completion. On average, for English words, every four characters represent one token. So, just add the number of characters in your prompt to the response length and divide the sum by four. This will give you a general idea of the tokens required. This is helpful if you're trying to get an idea of how many tokens are required for a number of tasks.

Another way to get the token count is with the token count indicator in the Playground. This is located just under the large text input, on the bottom right. The magnified area in the following screenshot shows the token count. If you hover your mouse over the number, you'll also see the total count with the completion. For our example, the prompt Do or do not. There is no try.—the wise words from Master Yoda—uses 10 tokens and 74 tokens with the completion:

Figure 1.6 – Token count

Figure 1.6 – Token count

While understanding tokens is important for staying under the 2,048 token limit, they are also important to understand because tokens are what OpenAI uses as the basis for usage fees. Overall token usage reporting is available for your account at https://beta.openai.com/account/usage. The following screenshot shows an example usage report. We'll discuss this more in Chapter 3, Working with the OpenAI Playground:

Figure 1.7 – Usage statistics

Figure 1.7 – Usage statistics

In addition to token usage, the other thing that affects the costs associated with using GPT-3 is the engine you choose to process your prompts. The engine refers to the language model that will be used. The main difference between the engines is the size of the associated model. Larger models can complete more complex tasks, but smaller models are more efficient. So, depending on the task complexity, you can significantly reduce costs by using a smaller model. The following screenshot shows the model pricing at the time of publishing. As you can see, the cost differences can be significant:

Figure 1.8 – Model pricing

Figure 1.8 – Model pricing

So, the engines or models each has a different cost but the one you'll need depends on the task you're performing. Let's look at the different engine options next.

Introducing Davinci, Babbage, Curie, and Ada

The massive dataset that is used for training GPT-3 is the primary reason why it's so powerful. However, bigger is only better when it's necessary—and more power comes at a cost. For those reasons, OpenAI provides multiple models to choose from. Today there are four primary models available, along with a model for content filtering and instruct models.

The available models or engines (as they're also referred to) are named Davinci, Babbage, Curie, and Ada. Of the four, Davinci is the largest and most capable. Davinci can perform any tasks that any other engine can perform. Babbage is the next most capable engine, which can do anything that Curie or Ada can do. Ada is the least capable engine, but the best-performing and lowest-cost engine.

When you're getting started and for initially testing new prompts, you'll usually want to begin with Davinci , then try, Ada, Babbage, or Curie to see if one of them can complete the task faster or more cost-effectively. The following is an overview of each engine and the types of tasks that might be best suited for each. However, keep in mind that you'll want to test. Even though the smaller engines might not be trained with as much data, they are all still general-purpose models.

Davinci

Davinci is the most capable model and can do anything that any other model can do, and much more—often with fewer instructions. Davinci is able to solve logic problems, determine cause and effect, understand the intent of text, produce creative content, explain character motives, and handle complex summarization tasks.

Curie

Curie tries to balance power and speed. It can do anything that Ada or Babbage can do but it's also capable of handling more complex classification tasks and more nuanced tasks like summarization, sentiment analysis, chatbot applications, and Question and Answers.

Babbage

Babbage is a bit more capable than Ada but not quite as performant. It can perform all the same tasks as Ada, but it can also handle a bit more involved classification tasks, and it's well suited for semantic search tasks that rank how well documents match a search query.

Ada

Ada is usually the fastest model and least costly. It's best for less nuanced tasks—for example, parsing text, reformatting text, and simpler classification tasks. The more context you provide Ada, the better it will likely perform.

Content filtering model

To help prevent inappropriate completions, OpenAI provides a content filtering model that is fine-tuned to recognize potentially offensive or hurtful language.

Instruct models

These are models that are built on top of the Davinci and Curie models. Instruct models are tuned to make it easier to tell the API what you want it to do. Clear instructions can often produce better results than the associated core model.

A snapshot in time

A final note to keep in mind about all of the engines is that they are all a snapshot in time, meaning the data used to train them cuts off on the date the model was built. So, GPT-3 is not working with up-to-the-minute or even up-to-the-day data—it's likely weeks or months old. OpenAI is planning to add more continuous training in the future, but today this is a consideration to keep in mind.

All of the GPT-3 models are extremely powerful and capable of generating text that is indistinguishable from human-written text. This holds tremendous potential for all kinds of potential applications. In most cases, that's a good thing. However, not all potential use cases are good.

Understanding GPT-3 risks

GPT-3 is a fantastic technology, with numerous practical and valuable potential applications. But as is often the case with powerful technologies, with its potential comes risk. In GPT-3's case, some of those risks include inappropriate results and potentially malicious use cases.

Inappropriate or offensive results

GPT-3 generates text so well that it can seem as though it is aware of what it is saying. It's not. It's an AI system with an excellent language model—it is not conscious in any way, so it will never willfully say something hurtful or inappropriate because it has no will. That said, it can certainly generate inappropriate, hateful, or malicious results—it's just not intentional.

Nevertheless, understanding that GPT-3 can and will likely generate offensive text at times needs to be understood and considered when using GPT or making GPT-3 results available to others. This is especially true for results that might be seen by children. We'll discuss this more and look at how to deal with it in Chapter 6, Content Filtering

Potential for malicious use

It's not hard to imagine potentially malicious or harmful uses for GPT-3. OpenAI even describes how GPT-3 could be weaponized for misinformation campaigns or for creating fake product reviews. But OpenAI's declared mission is to ensure that artificial general intelligence benefits all of humanity. Hence, pursuing that mission includes taking responsible steps to prevent their AI from being used for the wrong purposes. So, OpenAI has implemented an application approval process for all applications that will use GPT-3 or the OpenAI API.

But as application developers, this is something we also need to consider. When we build an application that uses GPT-3, we need to consider if and how the application could be used for the wrong purposes and take the necessary steps to prevent it. We'll talk more about this in Chapter 10, Going Live with OpenAI-Powered Apps

Summary

In this chapter, you learned that GPT-3 is a general-purpose language model for processing virtually any language processing task. You learned how GPT-3 works at a high level, along with key terms and concepts. We introduced the available models and discussed how all GPT-3 applications must go through an approval process to prevent potentially inappropriate or harmful results.

In the next chapter, we'll discuss different ways to use GPT-3 and look at specific GPT-3 use case examples.

Left arrow icon Right arrow icon

Key benefits

  • Understand the power of potential GPT-3 language models and the risks involved
  • Explore core GPT-3 use cases such as text generation, classification, and semantic search using engaging examples
  • Plan and prepare a GPT-3 application for the OpenAI review process required for publishing a live application

Description

Generative Pre-trained Transformer 3 (GPT-3) is a highly advanced language model from OpenAI that can generate written text that is virtually indistinguishable from text written by humans. Whether you have a technical or non-technical background, this book will help you understand and start working with GPT-3 and the OpenAI API. If you want to get hands-on with leveraging artificial intelligence for natural language processing (NLP) tasks, this easy-to-follow book will help you get started. Beginning with a high-level introduction to NLP and GPT-3, the book takes you through practical examples that show how to leverage the OpenAI API and GPT-3 for text generation, classification, and semantic search. You'll explore the capabilities of the OpenAI API and GPT-3 and find out which NLP use cases GPT-3 is best suited for. You’ll also learn how to use the API and optimize requests for the best possible results. With examples focusing on the OpenAI Playground and easy-to-follow JavaScript and Python code samples, the book illustrates the possible applications of GPT-3 in production. By the end of this book, you'll understand the best use cases for GPT-3 and how to integrate the OpenAI API in your applications for a wide array of NLP tasks.

Who is this book for?

Exploring GPT-3 is for anyone interested in natural language processing or learning GPT-3 with or without a technical background. Developers, product managers, entrepreneurs, and hobbyists looking to get to grips with NLP, AI, and GPT-3 will find this book useful. Basic computer skills are all you need to get the most out of this book.

What you will learn

  • Understand what GPT-3 is and how it can be used for various NLP tasks
  • Get a high-level introduction to GPT-3 and the OpenAI API
  • Implement JavaScript and Python code examples that call the OpenAI API
  • Structure GPT-3 prompts and options to get the best possible results
  • Select the right GPT-3 engine or model to optimize for speed and cost-efficiency
  • Find out which use cases would not be suitable for GPT-3
  • Create a GPT-3-powered knowledge base application that follows OpenAI guidelines
Estimated delivery fee Deliver to Norway

Standard delivery 10 - 13 business days

€11.95

Premium delivery 3 - 6 business days

€16.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Aug 27, 2021
Length: 296 pages
Edition : 1st
Language : English
ISBN-13 : 9781800563193
Category :
Languages :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Norway

Standard delivery 10 - 13 business days

€11.95

Premium delivery 3 - 6 business days

€16.95
(Includes tracking information)

Product Details

Publication date : Aug 27, 2021
Length: 296 pages
Edition : 1st
Language : English
ISBN-13 : 9781800563193
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 148.97
Transformers for Natural Language Processing
€67.99
Exploring GPT-3
€38.99
Mastering Transformers
€41.99
Total 148.97 Stars icon
Banner background image

Table of Contents

14 Chapters
Section 1: Understanding GPT-3 and the OpenAI API Chevron down icon Chevron up icon
Chapter 1: Introducing GPT-3 and the OpenAI API Chevron down icon Chevron up icon
Chapter 2: GPT-3 Applications and Use Cases Chevron down icon Chevron up icon
Section 2: Getting Started with GPT-3 Chevron down icon Chevron up icon
Chapter 3: Working with the OpenAI Playground Chevron down icon Chevron up icon
Chapter 4: Working with the OpenAI API Chevron down icon Chevron up icon
Chapter 5: Calling the OpenAI API in Code Chevron down icon Chevron up icon
Section 3: Using the OpenAI API Chevron down icon Chevron up icon
Chapter 6: Content Filtering Chevron down icon Chevron up icon
Chapter 7: Generating and Transforming Text Chevron down icon Chevron up icon
Chapter 8: Classifying and Categorizing Text Chevron down icon Chevron up icon
Chapter 9: Building a GPT-3-Powered Question-Answering App Chevron down icon Chevron up icon
Chapter 10: Going Live with OpenAI-Powered Apps Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3
(16 Ratings)
5 star 56.3%
4 star 25%
3 star 6.3%
2 star 12.5%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




James Mar 25, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Thought this was well laid out and well written. Outdated? Of course, there will be changes for example to the pricing of GTP-3, but these are small points. I thought the writers did a great job of explaining a complex topic - loved it
Amazon Verified review Amazon
Melanie Sep 19, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I'm a content designer/UX writer, not a developer. So when I heard about GPT-3, I was very intrigued about what this might mean for the future of my profession.I wanted to try to build an app using GPT-3 to generate content, but I didn't know enough about code to even get started. Learning code was incredibly slow going. I wondered, was there a quick and easy way to get a GPT-3 web app up and running?This book was exactly what I needed. It takes you step by step through the process of using GPT-3's API to make queries, and shows you how to make a basic web front end. I learned a lot about Node.js while building, too. If you're a developer, you'll probably find this book too basic. But for my purposes, it was perfect.Love this book! Thanks Steve.
Amazon Verified review Amazon
marc waesche Jul 24, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
A really very good structured document about the technical background and the usage of GPT-3! Unfortunatelly the very first review here (at least for me) was rather negative pointing to the fact that all informations in this book can also be found on the openAI website OR with a Google search. Of course! Show me a technical book which contains secrets you can not find anywhere in the internet! A technical book helps the owner to find things fast. That's it!
Amazon Verified review Amazon
Matthew Emerick Aug 27, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
About This BookThis book looks into how GPT-3 and how to interact with it. Examples are given in both Python and Javascript, though you don’t need any more than the given code to work the examples. There are a large number of examples included and a lot of advice on how to get the most out of one of the largest NLP models that exists.Who Is This For?The main audience for this book is anyone who wants to use GPT-3 in their software or website. One of the best parts of the book is that you don’t need to be technically inclined to any of the examples. But if you are a software developer, you can do a lot with GPT-3.OrganizationThere are three sections: introduction, getting started, and digging into the API. The book starts with everything you need to prepare for the remainder of the rest of the book. The final chapter details considerations if you intend to put your GPT-3 work into production. All in all, the layout is solid. Each chapter is kept simple, starting with the technical requirements and ending with a summary.Did This Book Succeed?This book really is everything included in this book, as the GPT-3 API is simple. By reading this book, you’ll know everything you’ll need to implement GPT-3 in nearly any way you choose. I can’t think of anything that is missing or and superfluous material.Rating and Final ThoughtsOverall, I give this book a 4.5 out of 5.Technically, GPT-3 is simple enough for a series of blog entries, so I have to question the need for this book. However, the author did an excellent job in keeping everything to the point and making sure you knew how much your inquiries are going to cost you. It’s well written with both fun and serious examples to show you the power and the drawbacks of GPT-3.
Amazon Verified review Amazon
Sam doGooder Aug 27, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This is an excellent introduction to the transformative GPT-3 conversational AI platform - essentially allowing someone with zero to little technical knowledge to be able to navigate use-cases like chatbots and AI-based text comprehension. The book is split into three parts, with the first two talking about the basics of the technology (what is API, how to use it, Curl/Postman etc.), and how to get started with the OpenAI public beta. In addition, there is a choice of languages with most examples available in both Javascript & Python - so you can use whatever works for you. The 3rd section will be something that advanced users might want to start with straightaway - with immediate use-cases being highlighted with full code availability. Essentially, for a book that works almost entirely on an API - there is a tremendous amount of content which would be useful for anyone who is even tangentially interested in exploring where AI in text is going. Highly recommended
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela