Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Processing with Optimus

You're reading from   Data Processing with Optimus Supercharge big data preparation tasks for analytics and machine learning with Optimus using Dask and PySpark

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781801079563
Length 300 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Dr. Argenis Leon Dr. Argenis Leon
Author Profile Icon Dr. Argenis Leon
Dr. Argenis Leon
Luis Aguirre Contreras Luis Aguirre Contreras
Author Profile Icon Luis Aguirre Contreras
Luis Aguirre Contreras
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Getting Started with Optimus
2. Chapter 1: Hi Optimus! FREE CHAPTER 3. Chapter 2: Data Loading, Saving, and File Formats 4. Section 2: Optimus – Transform and Rollout
5. Chapter 3: Data Wrangling 6. Chapter 4: Combining, Reshaping, and Aggregating Data 7. Chapter 5: Data Visualization and Profiling 8. Chapter 6: String Clustering 9. Chapter 7: Feature Engineering 10. Section 3: Advanced Features of Optimus
11. Chapter 8: Machine Learning 12. Chapter 9: Natural Language Processing 13. Chapter 10: Hacking Optimus 14. Chapter 11: Optimus as a Web Service 15. Other Books You May Enjoy

Optimus as a cohesive API

The main goal of Optimus is to create a cohesive API so that you can handle data and create ML models in the simplest way possible. In Optimus, you have the ml accessor, which will give you access to the ML algorithms implemented in Optimus.

ML algorithms can be hard to implement in parallel—for example, density-based spatial clustering of applications with noise (DBSCAN) is not implemented in Spark. For Optimus, we implemented algorithms that were common to all the libraries, and the ones that we considered as must-haves but that were missed, in a specific library. First, let's see which library empowers every Optimus engine, as follows:

  • pandas uses scikit-learn.
  • Dask uses Dask-ML.
  • cuDF uses cuML.
  • Dask cuDF uses cuML.
  • Vaex uses vaex.ml.
  • Spark uses MLlib.
  • Ibis has no ML library available yet.

With this said, now let's see which algorithms are implemented in every library. Have a look at the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime