Binary classification with logistic regression
Logistic regression is often used to model health outcomes when the target is binary, such as whether the person gets a disease or not. We will go through an example of that in this section. We will build a model to predict if an individual will have heart disease based on personal characteristics such as smoking and alcohol drinking habits; health features, including BMI, asthma, diabetes, and skin cancer; and age.
Note
In this chapter, we will work exclusively with data on heart disease that’s available for public download at https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease. This dataset is derived from the United States Center for Disease Control data on more than 400,000 individuals from 2020. Data columns include whether respondents ever had heart disease, body mass index, ever smoked, heavy alcohol drinking, age, diabetes, and kidney disease. We will work with a 30,000 individual sample...