Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Dancing with Qubits

You're reading from   Dancing with Qubits How quantum computing works and how it can change the world

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781838827366
Length 516 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Robert S. Sutor Robert S. Sutor
Author Profile Icon Robert S. Sutor
Robert S. Sutor
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface
1 Why Quantum Computing? FREE CHAPTER 2 They’re Not Old, They’re Classics 3 More Numbers than You Can Imagine 4 Planes and Circles and Spheres, Oh My 5 Dimensions 6 What Do You Mean ‘‘Probably’’? 7 One Qubit 8 Two Qubits, Three 9 Wiring Up the Circuits 10 From Circuits to Algorithms 11 Getting Physical 12 Questions about the Future Afterword
Other Books You May Enjoy Appendices

2.7 Growth, exponential and otherwise

Many people who use the phrase ‘‘exponential growth’’ use it incorrectly, somehow thinking it only means ‘‘very fast.’’ Exponential growth involves, well, exponents. Here’s a plot showing four kinds of growth: exponential, quadratic, linear, and logarithmic.

tikz JPG figure

I’ve drawn them so they all intersect at a point but afterwards diverge. After the convergence, the logarithmic plot (dot dashed) grows slowly, the linear plot (dashed) continues as it did, the quadratic plot (dotted) continues upward as a parabola, and the exponential one shoots up rapidly.

Take a look at the change in the vertical axis, the one I’ve labeled resources with respect to the horizontal axis, labeled problem size. As the size of the problem increases, how fast does the amount of resources needed increase? Here a resource might be the time required for the algorithm...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image