Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Codeless Deep Learning with KNIME

You're reading from   Codeless Deep Learning with KNIME Build, train, and deploy various deep neural network architectures using KNIME Analytics Platform

Arrow left icon
Product type Paperback
Published in Nov 2020
Publisher Packt
ISBN-13 9781800566613
Length 384 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Kathrin Melcher Kathrin Melcher
Author Profile Icon Kathrin Melcher
Kathrin Melcher
KNIME AG KNIME AG
Author Profile Icon KNIME AG
KNIME AG
Rosaria Silipo Rosaria Silipo
Author Profile Icon Rosaria Silipo
Rosaria Silipo
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Feedforward Neural Networks and KNIME Deep Learning Extension
2. Chapter 1: Introduction to Deep Learning with KNIME Analytics Platform FREE CHAPTER 3. Chapter 2: Data Access and Preprocessing with KNIME Analytics Platform 4. Chapter 3: Getting Started with Neural Networks 5. Chapter 4: Building and Training a Feedforward Neural Network 6. Section 2: Deep Learning Networks
7. Chapter 5: Autoencoder for Fraud Detection 8. Chapter 6: Recurrent Neural Networks for Demand Prediction 9. Chapter 7: Implementing NLP Applications 10. Chapter 8: Neural Machine Translation 11. Chapter 9: Convolutional Neural Networks for Image Classification 12. Section 3: Deployment and Productionizing
13. Chapter 10: Deploying a Deep Learning Network 14. Chapter 11: Best Practices and Other Deployment Options 15. Other Books You May Enjoy

Questions and Exercises

Test how well you have understood the concepts in this chapter by answering the following questions:

  1. A feedforward neural network is an architecture where:

    a. Each neuron from the previous layer is connected to each neuron in the next layer.

    b. There are auto and backward connections.

    c. There is just one unit in the output layer.

    d. There are as many input units as there are output units.

  2. Why do we need hidden layers in a feedforward neural network?

    a. For more computational power

    b. To speed up calculations

    c. To implement more complex functions

    d. For symmetry

  3. The backpropagation algorithm updates the network weights proportionally to:

    a. The output errors backpropagated through the network

    b. The input values forward propagated through the network

    c. The batch size

    d. The deltas calculated at the output layer and backpropagated through the network

  4. Which loss function is commonly used for a multiclass classification problem?

    a. MAE

    b. RMSE

    c. Categorical...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime