Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Clean Code in Python

You're reading from   Clean Code in Python Refactor your legacy code base

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781788835831
Length 332 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Mariano Anaya Mariano Anaya
Author Profile Icon Mariano Anaya
Mariano Anaya
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction, Code Formatting, and Tools FREE CHAPTER 2. Pythonic Code 3. General Traits of Good Code 4. The SOLID Principles 5. Using Decorators to Improve Our Code 6. Getting More Out of Our Objects with Descriptors 7. Using Generators 8. Unit Testing and Refactoring 9. Common Design Patterns 10. Clean Architecture 11. Other Books You May Enjoy

The meaning of clean code

There is no sole or strict definition of clean code. Moreover, there is probably no way of formally measuring clean code, so you cannot run a tool on a repository that could tell you how good, bad, or maintainable or not that code is. Sure, you can run tools such as checkers, linters, static analyzers, and so on. And those tools are of much help. They are necessary, but not sufficient. Clean code is not something a machine or script could tell (so far), but rather something that us, as professionals, can decide.

For decades of using the terms programming languages, we thought that they were languages to communicate our ideas to the machine, so it can run our programs. We were wrong. That's not the truth, but part of the truth. The real language behind programming languages is to communicate our ideas to other developers.

Here is where the true nature of clean code lies. It depends on other engineers to be able to read and maintain the code. Therefore, we, as professionals, are the only ones who can judge this. Think about it; as developers, we spend much more time reading code than actually writing it. Every time we want to make a change or add a new feature, we first have to read all the surroundings of the code we have to modify or extend. The language (Python), is what we use to communicate among ourselves.

So, instead of giving you a definition (or my definition) of clean code, I invite you to go through the book, read all about idiomatic Python, see the difference between good and bad code, identify traits of good code and good architecture, and then come up with your own definition. After reading this book, you will be able to judge and analyze code for yourself, and you will have a more clear understanding of clean code. You will know what it is and what it means, regardless of any definition given to you.

You have been reading a chapter from
Clean Code in Python
Published in: Aug 2018
Publisher: Packt
ISBN-13: 9781788835831
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image