Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Azure Data Engineer Associate Certification Guide

You're reading from   Azure Data Engineer Associate Certification Guide A hands-on reference guide to developing your data engineering skills and preparing for the DP-203 exam

Arrow left icon
Product type Paperback
Published in Feb 2022
Publisher Packt
ISBN-13 9781801816069
Length 574 pages
Edition 1st Edition
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Newton Alex Newton Alex
Author Profile Icon Newton Alex
Newton Alex
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Part 1: Azure Basics
2. Chapter 1: Introducing Azure Basics FREE CHAPTER 3. Part 2: Data Storage
4. Chapter 2: Designing a Data Storage Structure 5. Chapter 3: Designing a Partition Strategy 6. Chapter 4: Designing the Serving Layer 7. Chapter 5: Implementing Physical Data Storage Structures 8. Chapter 6: Implementing Logical Data Structures 9. Chapter 7: Implementing the Serving Layer 10. Part 3: Design and Develop Data Processing (25-30%)
11. Chapter 8: Ingesting and Transforming Data 12. Chapter 9: Designing and Developing a Batch Processing Solution 13. Chapter 10: Designing and Developing a Stream Processing Solution 14. Chapter 11: Managing Batches and Pipelines 15. Part 4: Design and Implement Data Security (10-15%)
16. Chapter 12: Designing Security for Data Policies and Standards 17. Part 5: Monitor and Optimize Data Storage and Data Processing (10-15%)
18. Chapter 13: Monitoring Data Storage and Data Processing 19. Chapter 14: Optimizing and Troubleshooting Data Storage and Data Processing 20. Part 6: Practice Exercises
21. Chapter 15: Sample Questions with Solutions 22. Other Books You May Enjoy

Compacting small files

Small files are the nightmares of big data processing systems. Analytical engines such as Spark, Synapse SQL, and Hive, and cloud storage systems such as Blob and ADLS Gen2, are all inherently optimized for big files. Hence, to make our data pipelines efficient, it is better to merge or compact the small files into bigger ones. This can be achieved in Azure using Azure Data Factory and Synapse Pipelines. Let's look at an example using Azure Data Factory to concatenate a bunch of small CSV files in a directory into one big file. The steps for Synapse pipelines will be very similar:

  1. From the Azure Data Factory portal, select the Copy Data activity as shown in the following screenshot. In the Source tab, either choose an existing source dataset or create a new one, pointing to the data storage where the small files are present. Next, choose the Wildcard file path option for File Path type. In the Wildcard Paths field, provide a folder path ending with...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime