Preprocessing the data is the process of cleaning and preparing the text for classification and derivation of meaning. Since our data may have a lot of noise, uninformative parts, such as HTML tags, need to be eliminated or re-aligned. At the word level, there might be many words that do not make much impact on the overall semantic of the textual context. Text preprocessing involves a few steps, such as extraction, tokenization, stop words removal, text enrichment, and normalization with stemming and lemmatization. In addition to these, some of the basic and generic techniques that improve accuracy involve converting the text to lower case, removing numbers (based on the context), removing punctuation, stripping white spaces (sometimes these add to noise in the input signal), and eliminating the sparse terms that are infrequent terms in the document. In the...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine