Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Applied Machine Learning and High-Performance Computing on AWS

You're reading from   Applied Machine Learning and High-Performance Computing on AWS Accelerate the development of machine learning applications following architectural best practices

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781803237015
Length 382 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (4):
Arrow left icon
Trenton Potgieter Trenton Potgieter
Author Profile Icon Trenton Potgieter
Trenton Potgieter
Shreyas Subramanian Shreyas Subramanian
Author Profile Icon Shreyas Subramanian
Shreyas Subramanian
Farooq Sabir Farooq Sabir
Author Profile Icon Farooq Sabir
Farooq Sabir
Mani Khanuja Mani Khanuja
Author Profile Icon Mani Khanuja
Mani Khanuja
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Introducing High-Performance Computing
2. Chapter 1: High-Performance Computing Fundamentals FREE CHAPTER 3. Chapter 2: Data Management and Transfer 4. Chapter 3: Compute and Networking 5. Chapter 4: Data Storage 6. Part 2: Applied Modeling
7. Chapter 5: Data Analysis 8. Chapter 6: Distributed Training of Machine Learning Models 9. Chapter 7: Deploying Machine Learning Models at Scale 10. Chapter 8: Optimizing and Managing Machine Learning Models for Edge Deployment 11. Chapter 9: Performance Optimization for Real-Time Inference 12. Chapter 10: Data Visualization 13. Part 3: Driving Innovation Across Industries
14. Chapter 11: Computational Fluid Dynamics 15. Chapter 12: Genomics 16. Chapter 13: Autonomous Vehicles 17. Chapter 14: Numerical Optimization 18. Index 19. Other Books You May Enjoy

Building ML systems using AWS

Before we can explore the fundamentals of how to implement the distributed training strategies highlighted at the outset, we first need to level set and understand just how the ML model training exercise can be performed on the AWS platform. Once we understand how AWS handles model training, we can further expand on this concept to address the concept of distributed training.

To assist ML practitioners in building ML systems, AWS provides the SageMaker (https://aws.amazon.com/sagemaker/) service. While SageMaker is a single AWS service, it comprises multiple modules that map specifically to an ML task. For example, SageMaker provides the Training job component that is purpose-built to take care of the heavy lifting and scaling of the model training task. ML practitioners can use SageMaker Training jobs to essentially provision ephemeral compute environments or clusters to handle the model training task. Essentially, all the ML practitioner needs to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image