Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Active Machine Learning with Python

You're reading from   Active Machine Learning with Python Refine and elevate data quality over quantity with active learning

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781835464946
Length 176 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Margaux Masson-Forsythe Margaux Masson-Forsythe
Author Profile Icon Margaux Masson-Forsythe
Margaux Masson-Forsythe
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Part 1: Fundamentals of Active Machine Learning
2. Chapter 1: Introducing Active Machine Learning FREE CHAPTER 3. Chapter 2: Designing Query Strategy Frameworks 4. Chapter 3: Managing the Human in the Loop 5. Part 2: Active Machine Learning in Practice
6. Chapter 4: Applying Active Learning to Computer Vision 7. Chapter 5: Leveraging Active Learning for Big Data 8. Part 3: Applying Active Machine Learning to Real-World Projects
9. Chapter 6: Evaluating and Enhancing Efficiency 10. Chapter 7: Utilizing Tools and Packages for Active ML 11. Index 12. Other Books You May Enjoy

Labeling with EMC sampling

EMC aims to query points that will induce the greatest change in the current model when labeled and trained on. This focuses labeling on points with the highest expected impact.

EMC techniques involve selecting a specific data point to label and learn from to cause the most significant alteration to the current model’s parameters and predictions. The core idea is to query the point that would impact the maximum change to the model’s parameters if we knew its label. By carefully identifying this particular data point, the EMC method aims to maximize the impact on the model and improve its overall performance. The process involves assessing various factors and analyzing the potential effects of each data point, ultimately choosing the one that is expected to yield the most substantial changes to the model, as depicted in Figure 2.8. The goal is to enhance the model’s accuracy and make it more effective in making predictions.

When...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime