Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Accelerate Model Training with PyTorch 2.X

You're reading from   Accelerate Model Training with PyTorch 2.X Build more accurate models by boosting the model training process

Arrow left icon
Product type Paperback
Published in Apr 2024
Publisher Packt
ISBN-13 9781805120100
Length 230 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Maicon Melo Alves Maicon Melo Alves
Author Profile Icon Maicon Melo Alves
Maicon Melo Alves
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Paving the Way FREE CHAPTER
2. Chapter 1: Deconstructing the Training Process 3. Chapter 2: Training Models Faster 4. Part 2: Going Faster
5. Chapter 3: Compiling the Model 6. Chapter 4: Using Specialized Libraries 7. Chapter 5: Building an Efficient Data Pipeline 8. Chapter 6: Simplifying the Model 9. Chapter 7: Adopting Mixed Precision 10. Part 3: Going Distributed
11. Chapter 8: Distributed Training at a Glance 12. Chapter 9: Training with Multiple CPUs 13. Chapter 10: Training with Multiple GPUs 14. Chapter 11: Training with Multiple Machines 15. Index 16. Other Books You May Enjoy

Summary

In this chapter, you learned that adopting a mixed-precision approach can accelerate the training process of our models.

Although it is possible to implement the mixed precision strategy by hand, it is preferable to rely on the AMP solution provided by PyTorch since it is an elegant and seamless process that’s designed to avoid the occurrence of errors involving numeric representation. When this kind of error occurs, they are very hard to identify and solve.

Implementing AMP on PyTorch requires adding a few extra lines to the original code. Essentially, we must wrap the training loop with the AMP engine, enable four flags related to backend libraries, and instantiate a gradient scaler.

Depending on the GPU architecture, library version, and the model itself, we can significantly improve the performance of the training process.

This chapter closes the second part of this book. Next, in the third and last part, we will learn how to spread the training process...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime