Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
A Practical Guide to Quantum Machine Learning and Quantum Optimization

You're reading from   A Practical Guide to Quantum Machine Learning and Quantum Optimization Hands-on Approach to Modern Quantum Algorithms

Arrow left icon
Product type Paperback
Published in Mar 2023
Publisher Packt
ISBN-13 9781804613832
Length 680 pages
Edition 1st Edition
Arrow right icon
Authors (2):
Arrow left icon
Elías F. Combarro Fernández-Combarro Álvarez Elías F. Combarro Fernández-Combarro Álvarez
Author Profile Icon Elías F. Combarro Fernández-Combarro Álvarez
Elías F. Combarro Fernández-Combarro Álvarez
Samuel González Castillo Samuel González Castillo
Author Profile Icon Samuel González Castillo
Samuel González Castillo
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Preface 1. Part I: I, for One, Welcome our New Quantum Overlords
2. Chapter 1: Foundations of Quantum Computing FREE CHAPTER 3. Chapter 2: The Tools of the Trade in Quantum Computing 4. Part II: When Time is Gold: Tools for Quantum Optimization
5. Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems 6. Chapter 4: Adiabatic Quantum Computing and Quantum Annealing 7. Chapter 5: QAOA: Quantum Approximate Optimization Algorithm 8. Chapter 6: GAS: Grover Adaptive Search 9. Chapter 7: VQE: Variational Quantum Eigensolver 10. Part III: A Match Made in Heaven: Quantum Machine Learning
11. Chapter 8: What Is Quantum Machine Learning? 12. Chapter 9: Quantum Support Vector Machines 13. Chapter 10: Quantum Neural Networks 14. Chapter 11: The Best of Both Worlds: Hybrid Architectures 15. Chapter 12: Quantum Generative Adversarial Networks 16. Part IV: Afterword and Appendices
17. Chapter 13: Afterword: The Future of Quantum Computing
18. Assessments 19. Bibliography
20. Index
21. Other Books You May Enjoy Appendix A: Complex Numbers
1. Appendix B: Basic Linear Algebra 2. Appendix C: Computational Complexity 3. Appendix D: Installing the Tools 4. Appendix E: Production Notes

Summary

In this chapter, you have learned about the adiabatic quantum computing model, which is equivalent to the quantum circuit model that we had already studied. Instead of discrete quantum gates, adiabatic quantum computing uses continuous evolution through a time-dependent Hamiltonian. You have learned how to select this Hamiltonian to encode combinatorial optimization problems and how, if the evolution is slow enough, the adiabatic theorem guarantees that we will measure the ground state at the end of the process.

You have also learned that, in practice, quantum annealing is used instead of adiabatic quantum computing, because adiabatic evolution can take too long for the process to be feasible. What is more, you now know how to use actual quantum annealers through D-Wave Leap to find approximate solutions to combinatorial optimization problems in several different ways.

You also know how to control several parameters of the annealing process, in order to improve the quality of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image