Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
40 Algorithms Every Programmer Should Know

You're reading from   40 Algorithms Every Programmer Should Know Hone your problem-solving skills by learning different algorithms and their implementation in Python

Arrow left icon
Product type Paperback
Published in Jun 2020
Publisher Packt
ISBN-13 9781789801217
Length 382 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Imran Ahmad Imran Ahmad
Author Profile Icon Imran Ahmad
Imran Ahmad
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Fundamentals and Core Algorithms
2. Overview of Algorithms FREE CHAPTER 3. Data Structures Used in Algorithms 4. Sorting and Searching Algorithms 5. Designing Algorithms 6. Graph Algorithms 7. Section 2: Machine Learning Algorithms
8. Unsupervised Machine Learning Algorithms 9. Traditional Supervised Learning Algorithms 10. Neural Network Algorithms 11. Algorithms for Natural Language Processing 12. Recommendation Engines 13. Section 3: Advanced Topics
14. Data Algorithms 15. Cryptography 16. Large-Scale Algorithms 17. Practical Considerations 18. Other Books You May Enjoy

Large-Scale Algorithms

Large-scale algorithms are designed to solve gigantic complex problems. The characterizing feature of large-scale algorithms is their need to have more than one execution engine due to the scale of their data and processing requirements. This chapter starts by discussing what types of algorithms are best suited to be run in parallel. Then, it discusses the issues related to parallelizing algorithms. Next, it presents the Compute Unified Device Architecture (CUDA) architecture and discusses how a single graphics processing unit (GPU) or an array of GPUs can be used to accelerate the algorithms. It also discusses what changes need to be made to the algorithm to effectively utilize the power of the GPU. Finally, this chapter discusses cluster computing and discusses how Apache Spark creates Resilient Distributed Datasets...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image