Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
15 Math Concepts Every Data Scientist Should Know

You're reading from   15 Math Concepts Every Data Scientist Should Know Understand and learn how to apply the math behind data science algorithms

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781837634187
Length 510 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Hoyle David Hoyle
Author Profile Icon David Hoyle
David Hoyle
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Essential Concepts FREE CHAPTER
2. Chapter 1: Recap of Mathematical Notation and Terminology 3. Chapter 2: Random Variables and Probability Distributions 4. Chapter 3: Matrices and Linear Algebra 5. Chapter 4: Loss Functions and Optimization 6. Chapter 5: Probabilistic Modeling 7. Part 2: Intermediate Concepts
8. Chapter 6: Time Series and Forecasting 9. Chapter 7: Hypothesis Testing 10. Chapter 8: Model Complexity 11. Chapter 9: Function Decomposition 12. Chapter 10: Network Analysis 13. Part 3: Selected Advanced Concepts
14. Chapter 11: Dynamical Systems 15. Chapter 12: Kernel Methods 16. Chapter 13: Information Theory 17. Chapter 14: Non-Parametric Bayesian Methods 18. Chapter 15: Random Matrices 19. Index 20. Other Books You May Enjoy

Confidence intervals

Our explanation of hypothesis testing in the previous section focused a lot on how to calculate the p-value. We explained that this focus on p-values can be dangerous, as well as that reporting results from a hypothesis test should include not just the p-value but also the estimate of the effect (e.g., the estimate of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:msub><mml:mo>-</mml:mo><mml:msub><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>B</mml:mi></mml:mrow></mml:msub></mml:math> for our difference in means example). The only problem is that our estimate is based on sample data, so it has an inherent uncertainty associated with it. Ideally, we should also report the degree of uncertainty associated with our estimate.

To summarize our estimate of the effect and also the uncertainty of that estimate, we’ll introduce a new concept, a confidence interval. To explain what a confidence interval is, we’ll first recap some results from the previous section.

Suppose we have run the two-sample z-test hypothesis test of the previous section. We used the calculated value of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:msub><mml:mo>-</mml:mo><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mi>B</mml:mi></mml:mrow></mml:msub></mml:math> to reject the null hypothesis that <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:msub><mml:mo>-</mml:mo><mml:msub><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>B</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:math>, so...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime