Yesterday, a team of researchers from UC Berkeley's Robot Learning Lab announced the completion of their three-year-long project called Blue. It is a low-cost, high-performance robot arm that was built to work in real-world environments such as warehouses, homes, hospitals, and urban landscapes.
https://www.youtube.com/watch?v=KZ88hPgrZzs&feature=youtu.be
With Blue, the researchers aimed to significantly accelerate research towards useful home robots. Blue is capable of mimicking human motions in real-world environments and enables more intuitive teleoperation.
Pieter Abbeel, the director of the Berkeley Robot Learning Lab and co-founder and chief scientist of AI startup Covariant, shared the vision behind this project, “AI has been moving very fast, and existing robots are getting smarter in some ways on the software side, but the hardware’s not changing. Everybody’s using the same hardware that they’ve been using for many years . . . We figured there must be an opportunity to come up with a new design that is better for the AI era.
Its dynamic properties meet or exceed the needs of a human operator, for instance, the robot has a nominal position-control bandwidth of 7.5 Hz and repeatability within 4mm. It is a kinematically-anthropomorphic robot arm with a 2 KG payload and can cost less than $5000. It consists of 7 Degree of Freedom, which includes 3 in the shoulder, 1 in the elbow, and 3 in the wrist.
Blue has quasi-direct drive (QDD) actuators, which offer better force control, selectable impedance, and are highly backdrivable. These actuators make Blue resilient to damage and also makes it safer for humans to be around.
The team is first distributing early release arms to developers and industry partners. We can see a product release within the next six months. The team is also planning to have a production edition of the Blue robot arm, which will be available by 2020.
To read more on Blue, check out the Berkley Open Arms site.
Walmart to deploy thousands of robots in its 5000 stores across US
Boston Dynamics’ latest version of Handle, robot designed for logistics
Setting up a Raspberry Pi for a robot – Headless by Default [Tutorial]