In this paper, that authors prove that learnable gates in a recurrent model formally provide quasi-invariance to general time transformations in the input data. Further, the authors try to recover part of the LSTM architecture from a simple axiomatic approach. This leads to a new way of initializing gate biases in LSTMs and GRUs. Experimentally, this new chrono initialization is shown to greatly improve learning of long term dependencies, with minimal implementation effort.
The authors have derived the self loop feedback gating mechanism of recurrent networks from first principles via a postulate of invariance to time warpings. Gated connections appear to regulate the local time constants in recurrent models. With this in mind, the chrono initialization, a principled way of initializing gate biases in LSTMs, has been introduced. Experimentally, chrono initialization is shown to bring notable benefits when facing long term dependencies.
Overall Score: 25/30
Average Score: 8
According to a reviewer, the core insight of the paper is the link between recurrent network design and its effect on how the network reacts to time transformations. This insight is simple, elegant and valuable, as per the reviewer. A minor complaint highlighted is that there are an unnecessarily large number of paragraph breaks, which make reading slightly jarring.
Recurrent neural networks and the LSTM architecture
Build a generative chatbot using recurrent neural networks (LSTM RNNs)
How to recognize Patterns with Neural Networks in Java