Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Artificial Intelligence Infrastructure Workshop

You're reading from   The Artificial Intelligence Infrastructure Workshop Build your own highly scalable and robust data storage systems that can support a variety of cutting-edge AI applications

Arrow left icon
Product type Paperback
Published in Aug 2020
Publisher Packt
ISBN-13 9781800209848
Length 732 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (6):
Arrow left icon
Bas Geerdink Bas Geerdink
Author Profile Icon Bas Geerdink
Bas Geerdink
Chinmay Arankalle Chinmay Arankalle
Author Profile Icon Chinmay Arankalle
Chinmay Arankalle
Kunal Gera Kunal Gera
Author Profile Icon Kunal Gera
Kunal Gera
Kevin Liao Kevin Liao
Author Profile Icon Kevin Liao
Kevin Liao
Gareth Dwyer Gareth Dwyer
Author Profile Icon Gareth Dwyer
Gareth Dwyer
Anand N.S. Anand N.S.
Author Profile Icon Anand N.S.
Anand N.S.
+2 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface
1. Data Storage Fundamentals 2. Artificial Intelligence Storage Requirements FREE CHAPTER 3. Data Preparation 4. The Ethics of AI Data Storage 5. Data Stores: SQL and NoSQL Databases 6. Big Data File Formats 7. Introduction to Analytics Engine (Spark) for Big Data 8. Data System Design Examples 9. Workflow Management for AI 10. Introduction to Data Storage on Cloud Services (AWS) 11. Building an Artificial Intelligence Algorithm 12. Productionizing Your AI Applications Appendix

Introduction

In the previous chapter, we learned how to create our own data pipelines and use Airflow to automate our jobs. This enables us to create more data pipelines at scale, which is great. However, when we start scaling the number of data pipelines in our local machine, we will quickly run into scaling issues due to the limitations of a single machine. A single machine might give you 16 CPUs and 32 GB of RAM, which allows up to 16 different data pipelines running in parallel providing a memory footprint of less than 32 GB. In reality, AI engineers need to run hundreds of data pipelines every day to train models, predict data, monitor system health, and so on. Therefore, we need many more machines to support operations on such a scale.

Nowadays, software engineers are building their applications on the cloud. There are many benefits to building applications on the cloud. Some of them are as follows:

  • The cloud is flexible. We can scale the capacity up or down as we...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image