In Chapter 2, Temporal Difference, SARSA, and Q-Learning, we will look into our first two RL algorithms: Q-learning and SARSA. Both of these algorithms are tabular-based and do not require the use of neural networks. Thus, we will code them in Python and NumPy. In Chapter 3, Deep Q-Network, we will cover DQN and use TensorFlow to code the agent for the rest of the book. We will then train it to play Atari Breakout. In Chapter 4, Double DQN, Dueling Architectures, and Rainbow, we will cover double DQN, dueling network architectures, and rainbow DQN. In Chapter 5, Deep Deterministic Policy Gradient, we will look at our first Actor-Critic RL algorithm called DDPG, learn about policy gradients, and apply them to a continuous action problem. In Chapter 6, Asynchronous Methods – A3C and A2C, we will investigate A3C, which is another RL algorithm that uses a master and several worker processes. In Chapter 7, Trust Region Policy Optimization and Proximal Policy Optimization, we will investigate two more RL algorithms: TRPO and PPO. Finally, we will apply DDPG and PPO to train an agent to drive a car autonomously in Chapter 8, Deep RL Applied to Autonomous Driving. From Chapter 3, Deep Q-Network, to Chapter 8, Deep RL Applied to Autonomous Driving, we'll use TensorFlow agents. Have fun learning RL.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine