Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Parallel Programming Cookbook

You're reading from   Python Parallel Programming Cookbook Master efficient parallel programming to build powerful applications using Python

Arrow left icon
Product type Paperback
Published in Aug 2015
Publisher
ISBN-13 9781785289583
Length 286 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giancarlo Zaccone Giancarlo Zaccone
Author Profile Icon Giancarlo Zaccone
Giancarlo Zaccone
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

Preface 1. Getting Started with Parallel Computing and Python 2. Thread-based Parallelism FREE CHAPTER 3. Process-based Parallelism 4. Asynchronous Programming 5. Distributed Python 6. GPU Programming with Python Index

Python in a parallel world

To be an interpreted language, Python is fast, and if speed is critical, it easily interfaces with extensions written in faster languages, such as C or C++. A common way of using Python is to use it for the high-level logic of a program; the Python interpreter is written in C and is known as CPython. The interpreter translates the Python code in an intermediate language called Python bytecode, which is analogous to an assembly language, but contains a high level of instruction. While a Python program runs, the so-called evaluation loop translates Python bytecode into machine-specific operations. The use of interpreter has advantages in code programming and debugging, but the speed of a program could be a problem. A first solution is provided by third-party packages, where a programmer writes a C module and then imports it from Python. Another solution is the use of a Just-in-Time Python compiler, which is an alternative to CPython, for example, the PyPy implementation optimizes code generation and the speed of a Python program. In this book, we will examine a third approach to the problem; in fact, Python provides ad hoc modules that could benefit from parallelism. The description of many of these modules, in which the parallel programming paradigm falls, will be discussed in subsequent chapters.

However, in this chapter, we will introduce the two fundamental concepts of threads and processes and how they are addressed in the Python programming language.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image