Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Data Science with Python

You're reading from   Practical Data Science with Python Learn tools and techniques from hands-on examples to extract insights from data

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781801071970
Length 620 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Nathan George Nathan George
Author Profile Icon Nathan George
Nathan George
Arrow right icon
View More author details
Toc

Table of Contents (30) Chapters Close

Preface 1. Part I - An Introduction and the Basics
2. Introduction to Data Science FREE CHAPTER 3. Getting Started with Python 4. Part II - Dealing with Data
5. SQL and Built-in File Handling Modules in Python 6. Loading and Wrangling Data with Pandas and NumPy 7. Exploratory Data Analysis and Visualization 8. Data Wrangling Documents and Spreadsheets 9. Web Scraping 10. Part III - Statistics for Data Science
11. Probability, Distributions, and Sampling 12. Statistical Testing for Data Science 13. Part IV - Machine Learning
14. Preparing Data for Machine Learning: Feature Selection, Feature Engineering, and Dimensionality Reduction 15. Machine Learning for Classification 16. Evaluating Machine Learning Classification Models and Sampling for Classification 17. Machine Learning with Regression 18. Optimizing Models and Using AutoML 19. Tree-Based Machine Learning Models 20. Support Vector Machine (SVM) Machine Learning Models 21. Part V - Text Analysis and Reporting
22. Clustering with Machine Learning 23. Working with Text 24. Part VI - Wrapping Up
25. Data Storytelling and Automated Reporting/Dashboarding 26. Ethics and Privacy 27. Staying Up to Date and the Future of Data Science 28. Other Books You May Enjoy
29. Index

Summary

We covered a lot of important topics in this chapter, starting with the foundation for tree-based ML models: the decision tree. We saw how trees can automatically determine splits for the data in order to make the best possible predictions, which uses a calculation such as the Gini coefficient or entropy. Next, we saw how these trees can be combined into an ensemble to form a random forest. Remember also that random forests bootstrap data for each decision tree, adding another element to prevent overfitting. Next, we saw how decision trees are used in ML boosting algorithms, such as AdaBoost, gradient boosting, XGBoost, LightGBM, and CatBoost.

These boosted algorithms fit decision trees to the data one step at a time, and each new tree fits to the data with weight added to incorrect predictions (AdaBoost) or fits to the gradient of the loss function (gradient boosting methods) in order to improve the model. We saw how the pycaret package can use the most prominent boosting...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime