A look ahead – Python for NLP
Traditionally, NLP has been accomplished with a variety of computer languages, from early, special-purpose languages, such as Lisp and Prolog, to more modern languages, such as Java and now Python. Currently, Python is probably the most popular language for NLP, in part because interesting applications can be implemented relatively quickly and developers can rapidly get feedback on the results of their ideas.
Another major advantage of Python is the very large number of useful, well-tested, and well-documented Python libraries that can be applied to NLP problems. Some of these libraries are NLTK, spaCy, scikit-learn, and Keras, to name only a few. We will be exploring these libraries in detail in the chapters to come. In addition to these libraries, we will also be working with development tools such as JupyterLab. You will also find other resources such as Stack Overflow and GitHub to be extremely valuable.