Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Natural Language Processing with AWS AI Services

You're reading from   Natural Language Processing with AWS AI Services Derive strategic insights from unstructured data with Amazon Textract and Amazon Comprehend

Arrow left icon
Product type Paperback
Published in Nov 2021
Publisher Packt
ISBN-13 9781801812535
Length 508 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Mona M Mona M
Author Profile Icon Mona M
Mona M
Premkumar Rangarajan Premkumar Rangarajan
Author Profile Icon Premkumar Rangarajan
Premkumar Rangarajan
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Section 1:Introduction to AWS AI NLP Services
2. Chapter 1: NLP in the Business Context and Introduction to AWS AI Services FREE CHAPTER 3. Chapter 2: Introducing Amazon Textract 4. Chapter 3: Introducing Amazon Comprehend 5. Section 2: Using NLP to Accelerate Business Outcomes
6. Chapter 4: Automating Document Processing Workflows 7. Chapter 5: Creating NLP Search 8. Chapter 6: Using NLP to Improve Customer Service Efficiency 9. Chapter 7: Understanding the Voice of Your Customer Analytics 10. Chapter 8: Leveraging NLP to Monetize Your Media Content 11. Chapter 9: Extracting Metadata from Financial Documents 12. Chapter 10: Reducing Localization Costs with Machine Translation 13. Chapter 11: Using Chatbots for Querying Documents 14. Chapter 12: AI and NLP in Healthcare 15. Section 3: Improving NLP Models in Production
16. Chapter 13: Improving the Accuracy of Document Processing Workflows 17. Chapter 14: Auditing Named Entity Recognition Workflows 18. Chapter 15: Classifying Documents and Setting up Human in the Loop for Active Learning 19. Chapter 16: Improving the Accuracy of PDF Batch Processing 20. Chapter 17: Visualizing Insights from Handwritten Content 21. Chapter 18: Building Secure, Reliable, and Efficient NLP Solutions 22. Other Books You May Enjoy

Summary

In this chapter, we introduced NLP by tracing the origins of AI, how it evolved over the last few decades, and how the application of AI became mainstream with the significant advances made with ML algorithms. We reviewed some examples of these algorithms, along with an example of how they can be used. We then pivoted to AI trends and saw how AI adoption grew exponentially over the last few years and has become a key technology in accelerating enterprise business value.

We read a cool example of how ExxonMobil uses Alexa at their gas stations and delved into how AI was created to mimic human cognition, and the broad categories of their applicability, such as text, speech, and vision. We saw how AI in natural language has two main areas of usage NLU for voice-based uses and NLP for deriving insights from text.

In analyzing how enterprises are building NLP models today, we reviewed some of the common challenges and how to mitigate them, such as digitizing paper-based text, collecting data from disparate sources, and understanding patterns in data, and how resource-intensive these solutions can be.

We then reviewed NLP industry trends and market segmentation and saw with an example how important NLP was and still continues to be during the pandemic. We dove deep into the philosophy of NLP and realized it was all about converting text to numerical representations and understanding the underlying patterns to decipher new meanings. We looked at an example of this pattern with how SALB could impact the global economy.

Finally, we reviewed the technology implications in setting up NLP training and the associated challenges. We reviewed the three layers of the AWS ML stack and introduced AWS AI services that provided pre-built models and ready-made intelligence.

In the next chapter, we will introduce Amazon Textract, a fully managed ML service that can read both printed and handwritten text from images and PDFs without having to train or build models and can be used without the need for ML skills. We will cover the features of Amazon Textract, what its functions are, what business challenges it was created to solve, what types of user requirements it can be applied to, and how easy it is to integrate Amazon Textract with other AWS services such as AWS Lambda for building business applications.

You have been reading a chapter from
Natural Language Processing with AWS AI Services
Published in: Nov 2021
Publisher: Packt
ISBN-13: 9781801812535
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image