Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Mastering Predictive Analytics with scikit-learn and TensorFlow
Mastering Predictive Analytics with scikit-learn and TensorFlow

Mastering Predictive Analytics with scikit-learn and TensorFlow: Implement machine learning techniques to build advanced predictive models using Python

Arrow left icon
Profile Icon Alvaro Fuentes
Arrow right icon
€24.99
Paperback Sep 2018 154 pages 1st Edition
eBook
€8.99 €19.99
Paperback
€24.99
Subscription
Free Trial
Renews at €18.99p/m
Arrow left icon
Profile Icon Alvaro Fuentes
Arrow right icon
€24.99
Paperback Sep 2018 154 pages 1st Edition
eBook
€8.99 €19.99
Paperback
€24.99
Subscription
Free Trial
Renews at €18.99p/m
eBook
€8.99 €19.99
Paperback
€24.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Mastering Predictive Analytics with scikit-learn and TensorFlow

Cross-validation and Parameter Tuning

Predictive analytics is about making predictions for unknown events. We use it to produce models that generalize data. For this, we use a technique called cross-validation.

Cross-validation is a validation technique for assessing the result of a statistical analysis that generalizes to an independent dataset that gives a measure of out-of-sample accuracy. It achieves the task by averaging over several random partitions of the data into training and test samples. It is often used for hyperparameter tuning by doing cross-validation for several possible values of a parameter and choosing the parameter value that gives the lowest cross-validation average error.

There are two kinds of cross-validation: exhaustive and non-exhaustive. K-fold is an example of non-exhaustive cross-validation. It is a technique for getting a more accurate assessment...

Holdout cross-validation

In holdout cross-validation, we hold out a percentage of observations and so we get two datasets. One is called the training dataset and the other is called the testing dataset. Here, we use the testing dataset to calculate our evaluation metrics, and the rest of the data is used to train the model. This is the process of holdout cross-validation.

The main advantage of holdout cross-validation is that it is very easy to implement and it is a very intuitive method of cross-validation.

The problem with this kind of cross-validation is that it provides a single estimate for the evaluation metric of the model. This is problematic because some models rely on randomness. So in principle, it is possible that the evaluation metrics calculated on the test sometimes they will vary a lot because of random chance. So the main problem with holdout cross-validation...

K-fold cross-validation

In k-fold cross-validation, we basically do holdout cross-validation many times. So in k-fold cross-validation, we partition the dataset into k equal-sized samples. Of these many k subsamples, a single subsample is retained as the validation data for testing the model, and the remaining k−1 subsamples are used as training data. This cross-validation process is then repeated k times, with each of the k subsamples used exactly once as the validation data. The k results can then be averaged to produce a single estimation.

The following screenshot shows a visual example of 5-fold cross-validation (k=5) :

Here, we see that our dataset gets divided into five parts. We use the first part for testing and the rest for training.

The following are the steps we follow in the 5-fold cross-validation method:

  1. We get the first estimation of our evaluation metrics...

Comparing models with k-fold cross-validation

As k-fold cross-validation method proved to be a better method, it is more suitable for comparing models. The reason behind this is that k-fold cross-validation gives much estimation of the evaluation metrics, and on averaging these estimations, we get a better assessment of model performance.

The following shows the code used to import libraries for comparing models:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline

After importing libraries, we'll import the diamond dataset. The following shows the code used to prepare this diamond dataset:

# importing data
data_path= '../data/diamonds.csv'
diamonds = pd.read_csv(data_path)
diamonds = pd.concat([diamonds, pd.get_dummies(diamonds['cut'], prefix='cut', drop_first=True)],axis=1)
diamonds = pd.concat([diamonds, pd.get_dummies...

Introduction to hyperparameter tuning

The method used to choose the best estimators for a particular dataset or choosing the best values for all hyperparameters is called hyperparameter tuning. Hyperparameters are parameters that are not directly learned within estimators. Their value is decided by the modelers.

For example, in the RandomForestClassifier object, there are a lot of hyperparameters, such as n_estimators, max_depth, max_features, and min_samples_split. Modelers decide the values for these hyperparameters.

Exhaustive grid search

One of the most important and generally-used methods for performing hyperparameter tuning is called the exhaustive grid search. This is a brute-force approach because it tries all of...

Summary

In this chapter, we learned about cross-validation, and different methods of cross-validation, including holdout cross-validation and k-fold cross-validation. We came to know that k-fold cross-validation is nothing but doing holdout cross-validation many times. We implemented k-fold cross-validation using the diamond dataset. We also compared different models using k-fold cross-validation and found the best-performing model, which was the random forest model.

Then, we discussed hyperparameter tuning. We came across the exhaustive grid-search method, which is used to perform hyperparameter tuning. We implemented hyperparameter tuning again using the diamond dataset. We also compared tuned and untuned models, and found that tuned parameters make the model perform better than untuned ones.

In the next chapter, we will study feature selection methods, dimensionality reduction...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Use ensemble methods to improve the performance of predictive analytics models
  • Implement feature selection, dimensionality reduction, and cross-validation techniques
  • Develop neural network models and master the basics of deep learning

Description

Python is a programming language that provides a wide range of features that can be used in the field of data science. Mastering Predictive Analytics with scikit-learn and TensorFlow covers various implementations of ensemble methods, how they are used with real-world datasets, and how they improve prediction accuracy in classification and regression problems. This book starts with ensemble methods and their features. You will see that scikit-learn provides tools for choosing hyperparameters for models. As you make your way through the book, you will cover the nitty-gritty of predictive analytics and explore its features and characteristics. You will also be introduced to artificial neural networks and TensorFlow, and how it is used to create neural networks. In the final chapter, you will explore factors such as computational power, along with improvement methods and software enhancements for efficient predictive analytics. By the end of this book, you will be well-versed in using deep neural networks to solve common problems in big data analysis.

Who is this book for?

Mastering Predictive Analytics with scikit-learn and TensorFlow is for data analysts, software engineers, and machine learning developers who are interested in implementing advanced predictive analytics using Python. Business intelligence experts will also find this book indispensable as it will teach them how to progress from basic predictive models to building advanced models and producing more accurate predictions. Prior knowledge of Python and familiarity with predictive analytics concepts are assumed.

What you will learn

  • Use ensemble algorithms to obtain accurate predictions
  • Apply dimensionality reduction techniques to combine features and build better models
  • Choose the optimal hyperparameters using cross-validation
  • Implement different techniques to solve current challenges in the predictive analytics domain
  • Understand various elements of deep neural network (DNN) models
  • Implement neural networks to solve both classification and regression problems
Estimated delivery fee Deliver to Netherlands

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Sep 29, 2018
Length: 154 pages
Edition : 1st
Language : English
ISBN-13 : 9781789617740
Category :
Languages :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Netherlands

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Publication date : Sep 29, 2018
Length: 154 pages
Edition : 1st
Language : English
ISBN-13 : 9781789617740
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 86.97
Ensemble Machine Learning Cookbook
€36.99
Mastering Predictive Analytics with scikit-learn and TensorFlow
€24.99
Machine Learning with scikit-learn Quick Start Guide
€24.99
Total 86.97 Stars icon
Banner background image

Table of Contents

6 Chapters
Ensemble Methods for Regression and Classification Chevron down icon Chevron up icon
Cross-validation and Parameter Tuning Chevron down icon Chevron up icon
Working with Features Chevron down icon Chevron up icon
Introduction to Artificial Neural Networks and TensorFlow Chevron down icon Chevron up icon
Predictive Analytics with TensorFlow and Deep Neural Networks Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela