Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with scikit-learn

You're reading from   Mastering Machine Learning with scikit-learn Apply effective learning algorithms to real-world problems using scikit-learn

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher
ISBN-13 9781788299879
Length 254 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Gavin Hackeling Gavin Hackeling
Author Profile Icon Gavin Hackeling
Gavin Hackeling
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. The Fundamentals of Machine Learning 2. Simple Linear Regression FREE CHAPTER 3. Classification and Regression with k-Nearest Neighbors 4. Feature Extraction 5. From Simple Linear Regression to Multiple Linear Regression 6. From Linear Regression to Logistic Regression 7. Naive Bayes 8. Nonlinear Classification and Regression with Decision Trees 9. From Decision Trees to Random Forests and Other Ensemble Methods 10. The Perceptron 11. From the Perceptron to Support Vector Machines 12. From the Perceptron to Artificial Neural Networks 13. K-means 14. Dimensionality Reduction with Principal Component Analysis

Bayes' theorem


Bayes' theorem is a formula for calculating the probability of an event using prior knowledge of related conditions. The theorem was discovered by an English statistician and minister named Thomas Bayes in the 18th century. Bayes never published his work; his notes were edited and published posthumously by the mathematician Richard Price. Bayes' theorem is given by the following formula:

A and B are events; P(A) is the probability of observing event A, and P(B) is the probability of observing event B. P(A|B) is the conditional probability of observing A given that B was observed. In classification tasks, our goal is to map features of explanatory variables to a discrete response variable; we must find the most likely label, A, given the features, B.

Note

A theorem is a mathematical statement that has been proven to be true based on axioms or other theorems.

Let's work through an example. Assume that a patient exhibits a symptom of a particular disease, and that a doctor administers...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image