Human pose estimation is another area of the remarkable success of the deep neural networks and has had rapid growth in recent years. In the last few chapters, we learned that deep neural networks use a combination of linear (convolution) and nonlinear (ReLU) operations to predict the output for a given set of input images. In the case of pose estimation, the deep neural network predicts the joint locations, when given a set of input images. The labeled dataset in an image consists of a bounding box determining N persons in the image and K joints per person. As the pose changes, the orientation of the joints change, so different positions are characterized by looking into the relative position of the joints. In the following sections, we'll describe the different pose estimation methods we can use.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand