Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for Imbalanced Data

You're reading from   Machine Learning for Imbalanced Data Tackle imbalanced datasets using machine learning and deep learning techniques

Arrow left icon
Product type Paperback
Published in Nov 2023
Publisher Packt
ISBN-13 9781801070836
Length 344 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Dr. Mounir Abdelaziz Dr. Mounir Abdelaziz
Author Profile Icon Dr. Mounir Abdelaziz
Dr. Mounir Abdelaziz
Kumar Abhishek Kumar Abhishek
Author Profile Icon Kumar Abhishek
Kumar Abhishek
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Chapter 1: Introduction to Data Imbalance in Machine Learning FREE CHAPTER 2. Chapter 2: Oversampling Methods 3. Chapter 3: Undersampling Methods 4. Chapter 4: Ensemble Methods 5. Chapter 5: Cost-Sensitive Learning 6. Chapter 6: Data Imbalance in Deep Learning 7. Chapter 7: Data-Level Deep Learning Methods 8. Chapter 8: Algorithm-Level Deep Learning Techniques 9. Chapter 9: Hybrid Deep Learning Methods 10. Chapter 10: Model Calibration 11. Assessments 12. Index 13. Other Books You May Enjoy Appendix: Machine Learning Pipeline in Production

Questions

  1. What are some challenges in porting data imbalance handling methods from classical machine learning models to deep learning models?
  2. How could an imbalanced version of the MNIST dataset be created?
  3. Use the MNIST dataset to train a CNN model with varying degrees of imbalance in the data. Record the model’s overall accuracy on a fixed test set. Plot how the overall accuracy changes as the imbalance in the training data increases. Observe whether the overall accuracy declines as the training data becomes more imbalanced.
  4. What is the purpose of using random oversampling with deep learning models?
  5. What are some of the data augmentation techniques that can be applied when dealing with limited or imbalanced data?
  6. How does undersampling work in handling data imbalance, and what are its limitations?
  7. Why is it important to ensure that the data augmentation techniques preserve the original labels of the dataset?
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image