Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
In-Memory Analytics with Apache Arrow

You're reading from   In-Memory Analytics with Apache Arrow Perform fast and efficient data analytics on both flat and hierarchical structured data

Arrow left icon
Product type Paperback
Published in Jun 2022
Publisher Packt
ISBN-13 9781801071031
Length 392 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Matthew Topol Matthew Topol
Author Profile Icon Matthew Topol
Matthew Topol
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Overview of What Arrow Is, its Capabilities, Benefits, and Goals
2. Chapter 1: Getting Started with Apache Arrow FREE CHAPTER 3. Chapter 2: Working with Key Arrow Specifications 4. Chapter 3: Data Science with Apache Arrow 5. Section 2: Interoperability with Arrow: pandas, Parquet, Flight, and Datasets
6. Chapter 4: Format and Memory Handling 7. Chapter 5: Crossing the Language Barrier with the Arrow C Data API 8. Chapter 6: Leveraging the Arrow Compute APIs 9. Chapter 7: Using the Arrow Datasets API 10. Chapter 8: Exploring Apache Arrow Flight RPC 11. Section 3: Real-World Examples, Use Cases, and Future Development
12. Chapter 9: Powered by Apache Arrow 13. Chapter 10: How to Leave Your Mark on Arrow 14. Chapter 11: Future Development and Plans 15. Other Books You May Enjoy

Arrow format versioning and stability

In order to ensure confidence that updating the version of the Arrow library in use won't break applications and the long-term stability of the Arrow project, there are two versions used to describe each release of the project: The format version and the library version. Different library implementations and releases can have different versions, but will always be implementing a specific format version. From version 1.0.0 onward, semantic versioning is used with releases.

Provided the major version of the format is the same between two libraries, any new library is backward-compatible with any older library with regards to being able to read data and metadata produced by an older library. Increases in the minor version of the format, such as an increase from version 1.0.0 to version 1.1.0, indicate new features that were added. As long as these new features are not used (such as new logical types or physical layouts), older libraries will be able to read data and metadata produced by newer versions of the libraries.

As far as the long-term stability of the format and libraries, only increases in the major version of the format would indicate any issue with the previous guarantees about compatibility. The Arrow project says that they do not expect this to be a frequent occurrence, rather it would be an exceptional event, in which case such a release would exercise caution for deployment. As a result of these compatibility guarantees, it ends up being safe and simple to ensure backward and forward compatibility when using the Arrow libraries and format.

You have been reading a chapter from
In-Memory Analytics with Apache Arrow
Published in: Jun 2022
Publisher: Packt
ISBN-13: 9781801071031
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image