-
The main use is dimensionality reduction, to force the network to learn important features, making it possible to reconstruct the original input. The downside of AE is that the latent space represented by the hidden layer is not continuous, making it hard to sample since the decoder won't be able to make sense of some of the points.
- The reconstruction loss penalizes the network when it creates outputs that are different from the input.
- In VAE, the latent space is continuous and smooth, making it possible to sample any point of the space and interpolate between two points. It is achieved by having the latent variables follow a probability distribution of P(z), often a Gaussian distribution.
- The KL divergence measures how much two probability distributions diverge from each other. When combined with the reconstruction loss...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine