Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Deep Learning for IoT

You're reading from   Hands-On Deep Learning for IoT Train neural network models to develop intelligent IoT applications

Arrow left icon
Product type Paperback
Published in Jun 2019
Publisher Packt
ISBN-13 9781789616132
Length 308 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Aditya Trivedi Aditya Trivedi
Author Profile Icon Aditya Trivedi
Aditya Trivedi
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Dr. Mohammad Abdur Razzaque Dr. Mohammad Abdur Razzaque
Author Profile Icon Dr. Mohammad Abdur Razzaque
Dr. Mohammad Abdur Razzaque
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks FREE CHAPTER
2. The End-to-End Life Cycle of the IoT 3. Deep Learning Architectures for IoT 4. Section 2: Hands-On Deep Learning Application Development for IoT
5. Image Recognition in IoT 6. Audio/Speech/Voice Recognition in IoT 7. Indoor Localization in IoT 8. Physiological and Psychological State Detection in IoT 9. IoT Security 10. Section 3: Advanced Aspects and Analytics in IoT
11. Predictive Maintenance for IoT 12. Deep Learning in Healthcare IoT 13. What's Next - Wrapping Up and Future Directions 14. Other Books You May Enjoy

Predictive Maintenance for IoT

In Internet of Things (IoT) devices, streaming data is generated for one event at a time. DL-based approaches can examine this data in order to diagnose the problem across the fleet in real time, and the future health of individual units can be predicted in order to enable on-demand maintenance. This strategy is known as predictive (or condition-based) maintenance. This approach is now emerging as one of the most promising and lucrative industrial applications of the IoT.

Considering these motivations, in this chapter, we will look at how to develop a DL solution for predictive maintenance for IoT using the Turbofan Engine Degradation Simulation dataset. The idea behind predictive maintenance is to determine whether the failure patterns of various types can be predictable. Furthermore, we will discuss how to collect data from IoT-enabled devices...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image